These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 21621067)
1. Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis. Sartorelli V; Juan AH Curr Top Dev Biol; 2011; 96():57-83. PubMed ID: 21621067 [TBL] [Abstract][Full Text] [Related]
2. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease. Sincennes MC; Brun CE; Rudnicki MA Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058 [TBL] [Abstract][Full Text] [Related]
3. Epigenetic regulation of skeletal muscle development and differentiation. Bharathy N; Ling BM; Taneja R Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250 [TBL] [Abstract][Full Text] [Related]
12. Muscle stem cells in developmental and regenerative myogenesis. Kang JS; Krauss RS Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319 [TBL] [Abstract][Full Text] [Related]
13. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Liu L; Cheung TH; Charville GW; Hurgo BM; Leavitt T; Shih J; Brunet A; Rando TA Cell Rep; 2013 Jul; 4(1):189-204. PubMed ID: 23810552 [TBL] [Abstract][Full Text] [Related]
14. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development. Zhao Q; Kang Y; Wang HY; Guan WJ; Li XC; Jiang L; He XH; Pu YB; Han JL; Ma YH; Zhao QJ Sci Rep; 2016 Jul; 6():30281. PubMed ID: 27452271 [TBL] [Abstract][Full Text] [Related]
15. Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. Shelton M; Ritso M; Liu J; O'Neil D; Kocharyan A; Rudnicki MA; Stanford WL; Skerjanc IS; Blais A PLoS One; 2019; 14(9):e0222946. PubMed ID: 31560727 [TBL] [Abstract][Full Text] [Related]
16. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Ryall JG; Dell'Orso S; Derfoul A; Juan A; Zare H; Feng X; Clermont D; Koulnis M; Gutierrez-Cruz G; Fulco M; Sartorelli V Cell Stem Cell; 2015 Feb; 16(2):171-83. PubMed ID: 25600643 [TBL] [Abstract][Full Text] [Related]
17. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. Naito M; Mori M; Inagawa M; Miyata K; Hashimoto N; Tanaka S; Asahara H PLoS Genet; 2016 Jul; 12(7):e1006167. PubMed ID: 27415617 [TBL] [Abstract][Full Text] [Related]
18. SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it's time to exchange! Albini S; Puri PL Exp Cell Res; 2010 Nov; 316(18):3073-80. PubMed ID: 20553711 [TBL] [Abstract][Full Text] [Related]
19. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020 [TBL] [Abstract][Full Text] [Related]