These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 21621067)

  • 1. Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis.
    Sartorelli V; Juan AH
    Curr Top Dev Biol; 2011; 96():57-83. PubMed ID: 21621067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of skeletal myogenesis.
    Saccone V; Puri PL
    Organogenesis; 2010; 6(1):48-53. PubMed ID: 20592865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic control of adult skeletal muscle stem cell functions.
    Segalés J; Perdiguero E; Muñoz-Cánoves P
    FEBS J; 2015 May; 282(9):1571-88. PubMed ID: 25251895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic Regulation of Adult Myogenesis.
    Robinson DCL; Dilworth FJ
    Curr Top Dev Biol; 2018; 126():235-284. PubMed ID: 29305001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of myogenesis.
    Perdiguero E; Sousa-Victor P; Ballestar E; Muñoz-Cánoves P
    Epigenetics; 2009 Nov; 4(8):541-50. PubMed ID: 20009536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The epigenetic network regulating muscle development and regeneration.
    Palacios D; Puri PL
    J Cell Physiol; 2006 Apr; 207(1):1-11. PubMed ID: 16155926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin modification and muscle differentiation.
    Yahi H; Philipot O; Guasconi V; Fritsch L; Ait-Si-Ali S
    Expert Opin Ther Targets; 2006 Dec; 10(6):923-34. PubMed ID: 17105377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of skeletal muscle stem cells through epigenetic mechanisms.
    Sousa-Victor P; Muñoz-Cánoves P; Perdiguero E
    Toxicol Mech Methods; 2011 May; 21(4):334-42. PubMed ID: 21495871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.
    Xie L; Yin A; Nichenko AS; Beedle AM; Call JA; Yin H
    J Clin Invest; 2018 Jun; 128(6):2339-2355. PubMed ID: 29533927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging.
    Liu L; Cheung TH; Charville GW; Hurgo BM; Leavitt T; Shih J; Brunet A; Rando TA
    Cell Rep; 2013 Jul; 4(1):189-204. PubMed ID: 23810552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development.
    Zhao Q; Kang Y; Wang HY; Guan WJ; Li XC; Jiang L; He XH; Pu YB; Han JL; Ma YH; Zhao QJ
    Sci Rep; 2016 Jul; 6():30281. PubMed ID: 27452271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression.
    Shelton M; Ritso M; Liu J; O'Neil D; Kocharyan A; Rudnicki MA; Stanford WL; Skerjanc IS; Blais A
    PLoS One; 2019; 14(9):e0222946. PubMed ID: 31560727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells.
    Ryall JG; Dell'Orso S; Derfoul A; Juan A; Zare H; Feng X; Clermont D; Koulnis M; Gutierrez-Cruz G; Fulco M; Sartorelli V
    Cell Stem Cell; 2015 Feb; 16(2):171-83. PubMed ID: 25600643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2.
    Naito M; Mori M; Inagawa M; Miyata K; Hashimoto N; Tanaka S; Asahara H
    PLoS Genet; 2016 Jul; 12(7):e1006167. PubMed ID: 27415617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: it's time to exchange!
    Albini S; Puri PL
    Exp Cell Res; 2010 Nov; 316(18):3073-80. PubMed ID: 20553711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adult skeletal muscle stem cells.
    Sambasivan R; Tajbakhsh S
    Results Probl Cell Differ; 2015; 56():191-213. PubMed ID: 25344672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.