These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21621741)

  • 1. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.
    Yang M; Ge Y; Wu J; Xiao J; Yu J
    J Genet Genomics; 2011 May; 38(5):201-7. PubMed ID: 21621741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III.
    McKenzie M; Chiotis M; Pinkert CA; Trounce IA
    Mol Biol Evol; 2003 Jul; 20(7):1117-24. PubMed ID: 12777531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frataxin interacts functionally with mitochondrial electron transport chain proteins.
    González-Cabo P; Vázquez-Manrique RP; García-Gimeno MA; Sanz P; Palau F
    Hum Mol Genet; 2005 Aug; 14(15):2091-8. PubMed ID: 15961414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i.
    Gershoni M; Fuchs A; Shani N; Fridman Y; Corral-Debrinski M; Aharoni A; Frishman D; Mishmar D
    J Mol Biol; 2010 Nov; 404(1):158-71. PubMed ID: 20868692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex.
    Frenzel M; Rommelspacher H; Sugawa MD; Dencher NA
    Exp Gerontol; 2010 Aug; 45(7-8):563-72. PubMed ID: 20159033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory chain supercomplexes in the plant mitochondrial membrane.
    Dudkina NV; Heinemeyer J; Sunderhaus S; Boekema EJ; Braun HP
    Trends Plant Sci; 2006 May; 11(5):232-40. PubMed ID: 16616870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of mitochondrial respiratory membrane protein complex II.
    Sun F; Huo X; Zhai Y; Wang A; Xu J; Su D; Bartlam M; Rao Z
    Cell; 2005 Jul; 121(7):1043-57. PubMed ID: 15989954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structure determination of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides.
    Axelrod HL; Abresch EC; Okamura MY; Yeh AP; Rees DC; Feher G
    J Mol Biol; 2002 May; 319(2):501-15. PubMed ID: 12051924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolution is a short-distance force at the protein interaction level and correlates with the modular organization of protein networks.
    Liang Z; Xu M; Teng M; Niu L; Wu J
    FEBS Lett; 2010 Oct; 584(19):4237-40. PubMed ID: 20837013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy breathing: energy conversion by mitochondrial respiratory supercomplexes.
    Schon EA; Dencher NA
    Cell Metab; 2009 Jan; 9(1):1-3. PubMed ID: 19117538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Coenzyme Q in mitochondrial electron transport.
    Lenaz G; Fato R; Formiggini G; Genova ML
    Mitochondrion; 2007 Jun; 7 Suppl():S8-33. PubMed ID: 17485246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial respiratory complex function and the phenotypic consequences of dysfunction.
    Annesley SJ; Carilla-Latorre S; Escalante R; Fisher PR
    Methods Mol Biol; 2013; 983():345-66. PubMed ID: 23494317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod.
    Willett CS; Burton RS
    Mol Biol Evol; 2004 Mar; 21(3):443-53. PubMed ID: 14660687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenesis of mitochondrial membrane proteins.
    Becker T; Gebert M; Pfanner N; van der Laan M
    Curr Opin Cell Biol; 2009 Aug; 21(4):484-93. PubMed ID: 19423316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress.
    Naydenov AV; MacDonald ML; Ongur D; Konradi C
    Arch Gen Psychiatry; 2007 May; 64(5):555-64. PubMed ID: 17485607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of mitochondrial protein expression in complexes I to V with natural and induced forms of canine idiopathic dilated cardiomyopathy.
    Lopes R; Solter PF; Sisson DD; Oyama MA; Prosek R
    Am J Vet Res; 2006 Jun; 67(6):971-7. PubMed ID: 16740089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory chain complexes and membrane fatty acids composition in rat testis mitochondria throughout development and ageing.
    Vázquez-Memije ME; Cárdenas-Méndez MJ; Tolosa A; Hafidi ME
    Exp Gerontol; 2005 Jun; 40(6):482-90. PubMed ID: 15972255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic defects in the oxidative phosphorylation (OXPHOS) system.
    Janssen RJ; van den Heuvel LP; Smeitink JA
    Expert Rev Mol Diagn; 2004 Mar; 4(2):143-56. PubMed ID: 14995902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarographic assays of respiratory chain complex activity.
    Villani G; Attardi G
    Methods Cell Biol; 2007; 80():121-33. PubMed ID: 17445691
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.