BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 21621837)

  • 1. Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology.
    Tan PH; Aung KZ; Toh SL; Goh JC; Nathan SS
    Biomaterials; 2011 Sep; 32(26):6131-7. PubMed ID: 21621837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Aspects in Bone Tumor Engineering.
    Menshikh K; Banicevic I; Obradovic B; Rimondini L
    Tissue Eng Part B Rev; 2024 Apr; 30(2):217-229. PubMed ID: 37830183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro osteosarcoma 3D microtissue model for drug development.
    Rimann M; Laternser S; Gvozdenovic A; Muff R; Fuchs B; Kelm JM; Graf-Hausner U
    J Biotechnol; 2014 Nov; 189():129-35. PubMed ID: 25234575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish as a model for human osteosarcoma.
    Mohseny AB; Hogendoorn PC
    Adv Exp Med Biol; 2014; 804():221-36. PubMed ID: 24924177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered organoids for biomedical applications.
    Roberto de Barros N; Wang C; Maity S; Peirsman A; Nasiri R; Herland A; Ermis M; Kawakita S; Gregatti Carvalho B; Hosseinzadeh Kouchehbaghi N; Donizetti Herculano R; Tirpáková Z; Mohammad Hossein Dabiri S; Lucas Tanaka J; Falcone N; Choroomi A; Chen R; Huang S; Zisblatt E; Huang Y; Rashad A; Khorsandi D; Gangrade A; Voskanian L; Zhu Y; Li B; Akbari M; Lee J; Remzi Dokmeci M; Kim HJ; Khademhosseini A
    Adv Drug Deliv Rev; 2023 Dec; 203():115142. PubMed ID: 37967768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered bone marrow as a clinically relevant ex vivo model for primary bone cancer research and drug screening.
    Griffin KH; Thorpe SW; Sebastian A; Hum NR; Coonan TP; Sagheb IS; Loots GG; Randall RL; Leach JK
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2302101120. PubMed ID: 37729195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional in vitro culture models in oncology research.
    Jubelin C; Muñoz-Garcia J; Griscom L; Cochonneau D; Ollivier E; Heymann MF; Vallette FM; Oliver L; Heymann D
    Cell Biosci; 2022 Sep; 12(1):155. PubMed ID: 36089610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Properties of Magnetic Fe
    Ge J; Asmatulu R; Zhu B; Zhang Q; Yang SY
    Bioengineering (Basel); 2022 Jun; 9(7):. PubMed ID: 35877329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-printed scaffold-based osteosarcoma model allows to investigate tumor phenotypes and pathogenesis in an in vitro bone-mimicking niche.
    Wang ML; Xu NY; Tang RZ; Liu XQ
    Mater Today Bio; 2022 Jun; 15():100295. PubMed ID: 35665234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix.
    Contessi Negrini N; Ricci C; Bongiorni F; Trombi L; D'Alessandro D; Danti S; Farè S
    Cancers (Basel); 2022 Apr; 14(8):. PubMed ID: 35454909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior.
    Fischetti T; Di Pompo G; Baldini N; Avnet S; Graziani G
    Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the tumor architecture into organoids.
    Luo Z; Zhou X; Mandal K; He N; Wennerberg W; Qu M; Jiang X; Sun W; Khademhosseini A
    Adv Drug Deliv Rev; 2021 Sep; 176():113839. PubMed ID: 34153370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling neoplastic disease with spheroids and organoids.
    Zanoni M; Cortesi M; Zamagni A; Arienti C; Pignatta S; Tesei A
    J Hematol Oncol; 2020 Jul; 13(1):97. PubMed ID: 32677979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression.
    González Díaz EC; Sinha S; Avedian RS; Yang F
    Acta Biomater; 2019 Nov; 99():18-32. PubMed ID: 31419564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Microfluidic Platforms, Microfabrication, and Tissue Engineered Scaffolds to Investigate Tumor Cells Mechanobiology.
    Millet M; Ben Messaoud R; Luthold C; Bordeleau F
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices.
    Senthebane DA; Jonker T; Rowe A; Thomford NE; Munro D; Dandara C; Wonkam A; Govender D; Calder B; Soares NC; Blackburn JM; Parker MI; Dzobo K
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30241395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3d Tissue Engineered In Vitro Models Of Cancer In Bone.
    Sitarski AM; Fairfield H; Falank C; Reagan MR
    ACS Biomater Sci Eng; 2018 Feb; 4(2):324-336. PubMed ID: 29756030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotypic breast cancer model based on a silk fibroin scaffold to study the tumor microenvironment.
    Dondajewska E; Juzwa W; Mackiewicz A; Dams-Kozlowska H
    Oncotarget; 2018 Jan; 9(4):4935-4950. PubMed ID: 29435153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of 3d culture systems to study osteosarcoma environment.
    De Luca A; Raimondi L; Salamanna F; Carina V; Costa V; Bellavia D; Alessandro R; Fini M; Giavaresi G
    J Exp Clin Cancer Res; 2018 Jan; 37(1):2. PubMed ID: 29304852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.