These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21622032)

  • 1. Lesion bypass by S. cerevisiae Pol ζ alone.
    Stone JE; Kumar D; Binz SK; Inase A; Iwai S; Chabes A; Burgers PM; Kunkel TA
    DNA Repair (Amst); 2011 Aug; 10(8):826-34. PubMed ID: 21622032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer.
    Gibbs PE; McDonald J; Woodgate R; Lawrence CW
    Genetics; 2005 Feb; 169(2):575-82. PubMed ID: 15520252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine.
    Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2003 Feb; 23(4):1453-9. PubMed ID: 12556503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae.
    Siebler HM; Lada AG; Baranovskiy AG; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2014 Dec; 24():138-149. PubMed ID: 24819597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast pol eta holds a cis-syn thymine dimer loosely in the active site during elongation opposite the 3'-T of the dimer, but tightly opposite the 5'-T.
    Sun L; Zhang K; Zhou L; Hohler P; Kool ET; Yuan F; Wang Z; Taylor JS
    Biochemistry; 2003 Aug; 42(31):9431-7. PubMed ID: 12899630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.
    Guo C; Fischhaber PL; Luk-Paszyc MJ; Masuda Y; Zhou J; Kamiya K; Kisker C; Friedberg EC
    EMBO J; 2003 Dec; 22(24):6621-30. PubMed ID: 14657033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleotide incorporation by yeast DNA polymerase ζ.
    Makarova AV; Nick McElhinny SA; Watts BE; Kunkel TA; Burgers PM
    DNA Repair (Amst); 2014 Jun; 18():63-7. PubMed ID: 24674899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
    Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV
    Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase zeta.
    Howell CA; Kondratick CM; Washington MT
    Nucleic Acids Res; 2008 Mar; 36(5):1731-40. PubMed ID: 18263611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of DNA lesion bypass by the yeast DNA polymerase eta.
    Yuan F; Zhang Y; Rajpal DK; Wu X; Guo D; Wang M; Taylor JS; Wang Z
    J Biol Chem; 2000 Mar; 275(11):8233-9. PubMed ID: 10713149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
    McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA
    Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translesion synthesis of 8,5'-cyclopurine-2'-deoxynucleosides by DNA polymerases η, ι, and ζ.
    You C; Swanson AL; Dai X; Yuan B; Wang J; Wang Y
    J Biol Chem; 2013 Oct; 288(40):28548-56. PubMed ID: 23965998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions.
    Acharya N; Johnson RE; Prakash S; Prakash L
    Mol Cell Biol; 2006 Dec; 26(24):9555-63. PubMed ID: 17030609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity.
    Szwajczak E; Fijalkowska IJ; Suski C
    Curr Genet; 2018 Jun; 64(3):575-580. PubMed ID: 29189894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis.
    Makarova AV; Stodola JL; Burgers PM
    Nucleic Acids Res; 2012 Dec; 40(22):11618-26. PubMed ID: 23066099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of oxidative metabolism on spontaneous Pol zeta-dependent translesion synthesis in Saccharomyces cerevisiae.
    Minesinger BK; Abdulovic AL; Ou TM; Jinks-Robertson S
    DNA Repair (Amst); 2006 Feb; 5(2):226-34. PubMed ID: 16290107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ.
    Tellier-Lebegue C; Dizet E; Ma E; Veaute X; Coïc E; Charbonnier JB; Maloisel L
    PLoS Genet; 2017 Dec; 13(12):e1007119. PubMed ID: 29281621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase ζ in DNA replication and repair.
    Martin SK; Wood RD
    Nucleic Acids Res; 2019 Sep; 47(16):8348-8361. PubMed ID: 31410467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.