These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21622307)

  • 1. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves.
    Gitelson AA; Chivkunova OB; Merzlyak MN
    Am J Bot; 2009 Oct; 96(10):1861-8. PubMed ID: 21622307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves.
    Merzlyak MN; Chivkunova OB; Solovchenko AE; Naqvi KR
    J Exp Bot; 2008; 59(14):3903-11. PubMed ID: 18796701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties and nondestructive estimation of anthocyanin content in plant leaves.
    Gitelson AA; Merzlyak MN; Chivkunova OB
    Photochem Photobiol; 2001 Jul; 74(1):38-45. PubMed ID: 11460535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice].
    Wang FM; Huang JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1064-8. PubMed ID: 19626904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves.
    Huang WD; Lin KH; Hsu MH; Huang MY; Yang ZW; Chao PY; Yang CM
    Bot Stud; 2014 Dec; 55(1):11. PubMed ID: 28510919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive detection of anthocyanin content in fresh leaves of purple maize using hyperspectral data.
    Yang X; Gao S; Gu X; Zhang C; Sun Q; Wei Z; Hu X; Qu X
    Appl Opt; 2022 Jul; 61(21):6213-6222. PubMed ID: 36256234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms.
    Mattila H; Tyystjärvi E
    Tree Physiol; 2023 May; 43(5):751-768. PubMed ID: 36715646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing carotenoid content in plant leaves with reflectance spectroscopy.
    Gitelson AA; Zur Y; Chivkunova OB; Merzlyak MN
    Photochem Photobiol; 2002 Mar; 75(3):272-81. PubMed ID: 11950093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress.
    Garriga M; Retamales JB; Romero-Bravo S; Caligari PD; Lobos GA
    J Integr Plant Biol; 2014 May; 56(5):505-15. PubMed ID: 24618024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest].
    Du HQ; Ge HL; Fan WY; Jin W; Zhou YF; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3033-7. PubMed ID: 20101980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance.
    Yamada N; Fujimura S
    Appl Opt; 1991 Sep; 30(27):3964-73. PubMed ID: 20706488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthocyanin contribution to chlorophyll meter readings and its correction.
    Hlavinka J; Nauš J; Špundová M
    Photosynth Res; 2013 Dec; 118(3):277-95. PubMed ID: 24129637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress].
    Chen B; Li SK; Wang KR; Wang FY; Xiao CH; Pan WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):421-5. PubMed ID: 20384137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study.
    Yacobi YZ; Moses WJ; Kaganovsky S; Sulimani B; Leavitt BC; Gitelson AA
    Water Res; 2011 Mar; 45(7):2428-36. PubMed ID: 21376361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data.
    Moses WJ; Gitelson AA; Perk RL; Gurlin D; Rundquist DC; Leavitt BC; Barrow TM; Brakhage P
    Water Res; 2012 Mar; 46(4):993-1004. PubMed ID: 22209281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the relationship between spectral properties of oilseed rape leaves and their chlorophyll content].
    Fang H; Song HY; Cao F; He Y; Qiu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1731-4. PubMed ID: 18051516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches.
    Gitelson A; Solovchenko A
    J Photochem Photobiol B; 2018 Jan; 178():537-544. PubMed ID: 29247926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.