These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 21622339)
1. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Christin PA; Besnard G Am J Bot; 2009 Dec; 96(12):2234-9. PubMed ID: 21622339 [TBL] [Abstract][Full Text] [Related]
2. C3 photosynthesis in Aristida longifolia: Implication for photosynthetic diversification in Aristidoideae (Poaceae). Cerros-Tlatilpa R; Columbus JT Am J Bot; 2009 Aug; 96(8):1379-87. PubMed ID: 21628285 [TBL] [Abstract][Full Text] [Related]
11. Light regulation of the photosynthetic phosphoenolpyruvate carboxylase (PEPC) in Hydrilla verticillata. Rao S; Reiskind J; Bowes G Plant Cell Physiol; 2006 Sep; 47(9):1206-16. PubMed ID: 16936335 [TBL] [Abstract][Full Text] [Related]
12. Climate, phylogeny and the ecological distribution of C4 grasses. Edwards EJ; Still CJ Ecol Lett; 2008 Mar; 11(3):266-76. PubMed ID: 18201200 [TBL] [Abstract][Full Text] [Related]
13. Phosphoenolpyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene. Vaasen A; Begerow D; Hampp R Plant Cell Environ; 2006 Dec; 29(12):2113-23. PubMed ID: 17081245 [TBL] [Abstract][Full Text] [Related]
14. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. Christin PA; Arakaki M; Osborne CP; Bräutigam A; Sage RF; Hibberd JM; Kelly S; Covshoff S; Wong GK; Hancock L; Edwards EJ J Exp Bot; 2014 Jul; 65(13):3609-21. PubMed ID: 24638902 [TBL] [Abstract][Full Text] [Related]
15. Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae. Christin PA; Sage TL; Edwards EJ; Ogburn RM; Khoshravesh R; Sage RF Evolution; 2011 Mar; 65(3):643-60. PubMed ID: 20955197 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids. Deng H; Zhang LS; Zhang GQ; Zheng BQ; Liu ZJ; Wang Y Mol Phylogenet Evol; 2016 Jan; 94(Pt B):559-564. PubMed ID: 26493226 [TBL] [Abstract][Full Text] [Related]
17. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. Grass Phylogeny Working Group II New Phytol; 2012 Jan; 193(2):304-12. PubMed ID: 22115274 [TBL] [Abstract][Full Text] [Related]
18. Salt tolerance evolves more frequently in C4 grass lineages. Bromham L; Bennett TH J Evol Biol; 2014 Mar; 27(3):653-9. PubMed ID: 24494637 [TBL] [Abstract][Full Text] [Related]
19. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. O'Leary B; Park J; Plaxton WC Biochem J; 2011 May; 436(1):15-34. PubMed ID: 21524275 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): Evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction. Tsuji Y; Suzuki I; Shiraiwa Y Plant Cell Physiol; 2009 Feb; 50(2):318-29. PubMed ID: 19109302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]