BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21622344)

  • 1. Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): Implications for endosperm evolution in early angiosperms.
    Rudall PJ; Eldridge T; Tratt J; Ramsay MM; Tuckett RE; Smith SY; Collinson ME; Remizowa MV; Sokoloff DD
    Am J Bot; 2009 Sep; 96(9):1581-93. PubMed ID: 21622344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants.
    Friedman WE; Bachelier JB; Hormaza JI
    Am J Bot; 2012 Jun; 99(6):1083-95. PubMed ID: 22688427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of spatial constraints during seed germination on the evolution of angiosperm cotyledons: a case study from tropical Hydatellaceae (Nymphaeales).
    Sokoloff DD; Remizowa MV; Beer AS; Yadav SR; Macfarlane TD; Ramsay MM; Rudall PJ
    Am J Bot; 2013 May; 100(5):824-43. PubMed ID: 23613353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms.
    Povilus RA; Losada JM; Friedman WE
    Ann Bot; 2015 Feb; 115(2):211-26. PubMed ID: 25497514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant lineages.
    Friedman WE; Bachelier JB
    Am J Bot; 2013 May; 100(5):906-15. PubMed ID: 23624925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydatellaceae are water lilies with gymnospermous tendencies.
    Friedman WE
    Nature; 2008 May; 453(7191):94-7. PubMed ID: 18354395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms.
    Rudall PJ; Remizowa MV; Beer AS; Bradshaw E; Stevenson DW; Macfarlane TD; Tuckett RE; Yadav SR; Sokoloff DD
    Ann Bot; 2008 May; 101(7):941-56. PubMed ID: 18378513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants.
    Friedman WE; Williams JH
    Evolution; 2003 Feb; 57(2):216-30. PubMed ID: 12683519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids,and eudicots.
    Williams JH; Friedman WE
    Am J Bot; 2004 Mar; 91(3):332-51. PubMed ID: 21653390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryological features of Tofieldia glutinosa and their bearing on the early diversification of monocotyledonous plants.
    Holloway SJ; Friedman WE
    Ann Bot; 2008 Aug; 102(2):167-82. PubMed ID: 18511412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endosperm Development Traits in a Comparative Analysis of Endospermogenesis and Embryogenesis in Angiosperms.
    Shamrov II
    Dokl Biol Sci; 2022 Oct; 506(1):239-255. PubMed ID: 36301432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development.
    Świerczyńska J; Kozieradzka-Kiszkurno M; Bohdanowicz J
    Protoplasma; 2013 Dec; 250(6):1369-80. PubMed ID: 23779214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage.
    Rudall PJ; Sokoloff DD; Remizowa MV; Conran JG; Davis JI; Macfarlane TD; Stevenson DW
    Am J Bot; 2007 Jul; 94(7):1073-92. PubMed ID: 21636477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants.
    Friedman WE; Ryerson KC
    Am J Bot; 2009 Jan; 96(1):129-43. PubMed ID: 21628180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged embryogenesis in Austrobaileya scandens (Austrobaileyaceae): its ecological and evolutionary significance.
    Losada JM; Bachelier JB; Friedman WE
    New Phytol; 2017 Jul; 215(2):851-864. PubMed ID: 28631322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seedling diversity in Hydatellaceae: implications for the evolution of angiosperm cotyledons.
    Sokoloff DD; Remizowa MV; Macfarlane TD; Tuckett RE; Ramsay MM; Beer AS; Yadav SR; Rudall PJ
    Ann Bot; 2008 Jan; 101(1):153-64. PubMed ID: 18032428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome behavior at the base of the angiosperm radiation: karyology of Trithuria submersa (Hydatellaceae, Nymphaeales).
    Kynast RG; Joseph JA; Pellicer J; Ramsay MM; Rudall PJ
    Am J Bot; 2014 Sep; 101(9):1447-55. PubMed ID: 25253705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants.
    Friedman WE
    Science; 1992 Jan; 255(5042):336-9. PubMed ID: 17779584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starch-accumulating (S-type) sieve-element plastids in Hydatellaceae: implications for plastid evolution in flowering plants.
    Tratt J; Prychid CJ; Behnke HD; Rudall PJ
    Protoplasma; 2009 Oct; 237(1-4):19-26. PubMed ID: 19662328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower.
    Rudall PJ; Remizowa MV; Prenner G; Prychid CJ; Tuckett RE; Sokoloff DD
    Am J Bot; 2009 Jan; 96(1):67-82. PubMed ID: 21628176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.