BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 21622645)

  • 1. Transcription factor networks in erythroid cell and megakaryocyte development.
    Doré LC; Crispino JD
    Blood; 2011 Jul; 118(2):231-9. PubMed ID: 21622645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis.
    Klimchenko O; Mori M; Distefano A; Langlois T; Larbret F; Lecluse Y; Feraud O; Vainchenker W; Norol F; Debili N
    Blood; 2009 Aug; 114(8):1506-17. PubMed ID: 19478046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEIS1 regulates early erythroid and megakaryocytic cell fate.
    Zeddies S; Jansen SB; di Summa F; Geerts D; Zwaginga JJ; van der Schoot CE; von Lindern M; Thijssen-Timmer DC
    Haematologica; 2014 Oct; 99(10):1555-64. PubMed ID: 25107888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways.
    Psaila B; Barkas N; Iskander D; Roy A; Anderson S; Ashley N; Caputo VS; Lichtenberg J; Loaiza S; Bodine DM; Karadimitris A; Mead AJ; Roberts I
    Genome Biol; 2016 May; 17():83. PubMed ID: 27142433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Short Variant Form of New Kelch Family Protein Leads to Erythroid and Megakaryocyte Dysplasia by Targeting Megakaryocyte-Erythroid Progenitors.
    Lin Y; Luo Y; Hu F; Wang T; Dong Y; Yang D; He X; Chen X; Wang J; Du J; Zhang X
    DNA Cell Biol; 2018 Oct; 37(10):831-838. PubMed ID: 30124330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment.
    Gregory GD; Miccio A; Bersenev A; Wang Y; Hong W; Zhang Z; Poncz M; Tong W; Blobel GA
    Blood; 2010 Mar; 115(11):2156-66. PubMed ID: 20065294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants.
    Kwon N; Thompson EN; Mayday MY; Scanlon V; Lu YC; Krause DS
    Curr Opin Hematol; 2021 Jan; 28(1):28-35. PubMed ID: 33186151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood.
    Tallack MR; Perkins AC
    Haematologica; 2010 Jan; 95(1):144-7. PubMed ID: 19850899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.
    Cai M; Langer EM; Gill JG; Satpathy AT; Albring JC; KC W; Murphy TL; Murphy KM
    Blood; 2012 Jul; 120(2):335-46. PubMed ID: 22665933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notch1 regulates progenitor cell proliferation and differentiation during mouse yolk sac hematopoiesis.
    Cortegano I; Melgar-Rojas P; Luna-Zurita L; Siguero-Álvarez M; Marcos MA; Gaspar ML; de la Pompa JL
    Cell Death Differ; 2014 Jul; 21(7):1081-94. PubMed ID: 24583642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.
    Woolthuis CM; Park CY
    Blood; 2016 Mar; 127(10):1242-8. PubMed ID: 26787736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel role for EKLF in megakaryocyte lineage commitment.
    Frontelo P; Manwani D; Galdass M; Karsunky H; Lohmann F; Gallagher PG; Bieker JJ
    Blood; 2007 Dec; 110(12):3871-80. PubMed ID: 17715392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling.
    Trinh BQ; Barengo N; Kim SB; Lee JS; Zweidler-McKay PA; Naora H
    J Cell Sci; 2015 Aug; 128(16):3055-67. PubMed ID: 26208636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation.
    Ikonomi P; Rivera CE; Riordan M; Washington G; Schechter AN; Noguchi CT
    Exp Hematol; 2000 Dec; 28(12):1423-31. PubMed ID: 11146164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis.
    Doré LC; Chlon TM; Brown CD; White KP; Crispino JD
    Blood; 2012 Apr; 119(16):3724-33. PubMed ID: 22383799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic HoxB4-regulatory network during embryonic stem cell differentiation to hematopoietic cells.
    Fan R; Bonde S; Gao P; Sotomayor B; Chen C; Mouw T; Zavazava N; Tan K
    Blood; 2012 May; 119(19):e139-47. PubMed ID: 22438249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular biology of megakaryocyte differentiation in the absence of lineage-restricted transcription factors.
    Lecine P; Shivdasani RA
    Stem Cells; 1998; 16 Suppl 2():91-5. PubMed ID: 11012181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation.
    Psaila B; Mead AJ
    Blood; 2019 Mar; 133(13):1427-1435. PubMed ID: 30728145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced expression of p21 in GPIIb-p21 transgenic mice induces abnormalities in the proliferation of erythroid and megakaryocyte progenitors and primitive hematopoietic cells.
    Albanese P; Chagraoui J; Charon M; Cocault L; Dusanter-Fourt I; Romeo PH; Uzan G
    Exp Hematol; 2002 Nov; 30(11):1263-72. PubMed ID: 12423679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation.
    Mukai HY; Motohashi H; Ohneda O; Suzuki N; Nagano M; Yamamoto M
    Mol Cell Biol; 2006 Nov; 26(21):7953-65. PubMed ID: 16940183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.