These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21623368)

  • 21. Tandem domain swapping: determinants of multidomain protein misfolding.
    Lafita A; Tian P; Best RB; Bateman A
    Curr Opin Struct Biol; 2019 Oct; 58():97-104. PubMed ID: 31260947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence quenching: A tool for single-molecule protein-folding study.
    Zhuang X; Ha T; Kim HD; Centner T; Labeit S; Chu S
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14241-4. PubMed ID: 11121030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modularity and homology: modelling of the titin type I modules and their interfaces.
    Amodeo P; Fraternali F; Lesk AM; Pastore A
    J Mol Biol; 2001 Aug; 311(2):283-96. PubMed ID: 11478861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.
    Zhang B; Evans JS
    Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous refolding of the large multidomain protein malate synthase G proceeds through misfolding traps.
    Kumar V; Chaudhuri TK
    J Biol Chem; 2018 Aug; 293(34):13270-13283. PubMed ID: 29959230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unfolding of titin domains studied by molecular dynamics simulations.
    Gao M; Lu H; Schulten K
    J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extensive and modular intrinsically disordered segments in C. elegans TTN-1 and implications in filament binding, elasticity and oblique striation.
    Forbes JG; Flaherty DB; Ma K; Qadota H; Benian GM; Wang K
    J Mol Biol; 2010 May; 398(5):672-89. PubMed ID: 20346955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single molecule force spectroscopy of the cardiac titin N2B element: effects of the molecular chaperone alphaB-crystallin with disease-causing mutations.
    Zhu Y; Bogomolovas J; Labeit S; Granzier H
    J Biol Chem; 2009 May; 284(20):13914-13923. PubMed ID: 19282282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rigid conformation of an immunoglobulin domain tandem repeat in the A-band of the elastic muscle protein titin.
    Müller S; Lange S; Gautel M; Wilmanns M
    J Mol Biol; 2007 Aug; 371(2):469-80. PubMed ID: 17574571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set.
    Pfuhl M; Pastore A
    Structure; 1995 Apr; 3(4):391-401. PubMed ID: 7613868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Titin folding energy and elasticity.
    Soteriou A; Clarke A; Martin S; Trinick J
    Proc Biol Sci; 1993 Nov; 254(1340):83-6. PubMed ID: 8290612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
    Staple DB; Payne SH; Reddin AL; Kreuzer HJ
    Phys Rev Lett; 2008 Dec; 101(24):248301. PubMed ID: 19113678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association of the chaperone alphaB-crystallin with titin in heart muscle.
    Bullard B; Ferguson C; Minajeva A; Leake MC; Gautel M; Labeit D; Ding L; Labeit S; Horwitz J; Leonard KR; Linke WA
    J Biol Chem; 2004 Feb; 279(9):7917-24. PubMed ID: 14676215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal effects in stretching of Go-like models of titin and secondary structures.
    Cieplak M; Hoang TX; Robbins MO
    Proteins; 2004 Aug; 56(2):285-97. PubMed ID: 15211512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Restoring force development by titin/connectin and assessment of Ig domain unfolding.
    Preetha N; Yiming W; Helmes M; Norio F; Siegfried L; Granzier H
    J Muscle Res Cell Motil; 2005; 26(6-8):307-17. PubMed ID: 16470334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hidden complexity in the mechanical properties of titin.
    Williams PM; Fowler SB; Best RB; Toca-Herrera JL; Scott KA; Steward A; Clarke J
    Nature; 2003 Mar; 422(6930):446-9. PubMed ID: 12660787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.