BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 21623371)

  • 1. A gene regulatory network controlling the embryonic specification of endoderm.
    Peter IS; Davidson EH
    Nature; 2011 May; 474(7353):635-9. PubMed ID: 21623371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    Peter IS; Davidson EH
    Dev Biol; 2010 Apr; 340(2):188-99. PubMed ID: 19895806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information processing at the foxa node of the sea urchin endomesoderm specification network.
    de-Leon SB; Davidson EH
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10103-8. PubMed ID: 20479235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic pattern formation without morphogens.
    Bolouri H
    Bioessays; 2008 May; 30(5):412-7. PubMed ID: 18404688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks for development.
    Levine M; Davidson EH
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4936-42. PubMed ID: 15788537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global regulatory logic for specification of an embryonic cell lineage.
    Oliveri P; Tu Q; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5955-62. PubMed ID: 18413610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic BMP-cWNT signaling in the cnidarian
    Wijesena N; Simmons DK; Martindale MQ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5608-E5615. PubMed ID: 28652368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos.
    Sethi AJ; Wikramanayake RM; Angerer RC; Range RC; Angerer LM
    Science; 2012 Feb; 335(6068):590-3. PubMed ID: 22301319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis.
    McCauley BS; Akyar E; Saad HR; Hinman VF
    Development; 2015 Jan; 142(1):207-17. PubMed ID: 25516976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.