BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 2162374)

  • 1. Direct effects of chronic ethanol exposure on beta-adrenergic and adenosine-sensitive adenylate cyclase activities and cyclic AMP content in primary cerebellar cultures.
    Rabin RA
    J Neurochem; 1990 Jul; 55(1):122-8. PubMed ID: 2162374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic ethanol exposure has a dual effect on adenylate cyclase activity and cyclic AMP content.
    Rabin RA
    Ann N Y Acad Sci; 1991; 625():441-3. PubMed ID: 1647736
    [No Abstract]   [Full Text] [Related]  

  • 3. Chronic ethanol exposure of PC 12 cells alters adenylate cyclase activity and intracellular cyclic AMP content.
    Rabin RA
    J Pharmacol Exp Ther; 1990 Mar; 252(3):1021-7. PubMed ID: 2156988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response of adenylate cyclase and ATPase activities after chronic ethanol exposure of PC12 cells.
    Rabin RA
    J Neurochem; 1988 Oct; 51(4):1148-55. PubMed ID: 2843606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic exposure to adenosine receptor agonists and antagonists reciprocally regulates the A1 adenosine receptor-adenylyl cyclase system in cerebellar granule cells.
    Hettinger-Smith BD; Leid M; Murray TF
    J Neurochem; 1996 Nov; 67(5):1921-30. PubMed ID: 8863496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive changes in the responsiveness of adenylate cyclase to catecholamines.
    Perkins JP; Su YF; Harden TK
    Drug Alcohol Depend; 1979; 4(3-4):279-94. PubMed ID: 43242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ethanol on cyclic AMP levels in intact PC12 cells.
    Rabe CS; Giri PR; Hoffman PL; Tabakoff B
    Biochem Pharmacol; 1990 Aug; 40(3):565-71. PubMed ID: 2166518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny of beta-adrenergic receptor-mediated cyclic AMP generating system in primary cultured neurons.
    Ma FH; Ohkuma S; Kishi M; Kuriyama K
    Int J Dev Neurosci; 1991; 9(4):347-56. PubMed ID: 1659119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desensitization of beta-adrenergic receptor-coupled adenylate cyclase activity. Differences following exposure of cells to two full agonists.
    Pittman RN; Rabin RA; Molinoff PB
    Biochem Pharmacol; 1984 Nov; 33(22):3579-84. PubMed ID: 6150707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the beta-adrenergic receptor in intact cells: relationship to heterologous and homologous mechanisms of adenylate cyclase desensitization.
    Sibley DR; Daniel K; Strader CD; Lefkowitz RJ
    Arch Biochem Biophys; 1987 Oct; 258(1):24-32. PubMed ID: 2444163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and -independent pathways.
    Stevens PA; Pyne S; Grady M; Pyne NJ
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):233-9. PubMed ID: 8280104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal and cerebellar beta-adrenergic receptors and adenylate cyclase are differentially altered by chronic ethanol ingestion.
    Valverius P; Hoffman PL; Tabakoff B
    J Neurochem; 1989 Feb; 52(2):492-7. PubMed ID: 2536073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic ethanol treatment on the beta-adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex.
    Saito T; Lee JM; Hoffman PL; Tabakoff B
    J Neurochem; 1987 Jun; 48(6):1817-22. PubMed ID: 3033151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of adenylate cyclase activity in cultured bovine pulmonary arterial endothelial cells. Effects of adenosine and derivatives.
    Legrand AB; Narayanan TK; Ryan US; Aronstam RS; Catravas JD
    Biochem Pharmacol; 1989 Feb; 38(3):423-30. PubMed ID: 2465005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of extracellular adenosine in ethanol-induced desensitization of cyclic AMP production.
    Rabin RA; Fiorella D; Van Wylen DG
    J Neurochem; 1993 Mar; 60(3):1012-7. PubMed ID: 8382260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta 1-adrenergic selectivity of the new cardiotonic agent denopamine in its stimulating effects on adenylate cyclase.
    Inamasu M; Totsuka T; Ikeo T; Nagao T; Takeyama S
    Biochem Pharmacol; 1987 Jun; 36(12):1947-54. PubMed ID: 3036156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between beta-adrenoceptor regulation and beta-adrenergic responsiveness in hepatocytes. Studies on acquisition, desensitization and resensitization of isoproterenol-sensitive adenylate cyclase in primary culture.
    Refsnes M; Sandnes D; Christoffersen T
    Eur J Biochem; 1987 Mar; 163(3):457-66. PubMed ID: 3030743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF; Smith CC; Henneberry RC
    Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex.
    Rosenberg PA; Li Y
    Brain Res; 1995 Sep; 692(1-2):227-32. PubMed ID: 8548307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.