These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 2162545)

  • 1. The furanocoumarin columbianadin inhibits depolarization induced Ca2+ uptake in rat pituitary GH3 cells.
    Törnquist K; Vuorela H
    Planta Med; 1990 Feb; 56(1):127-9. PubMed ID: 2162545
    [No Abstract]   [Full Text] [Related]  

  • 2. The coumarin osthol attenuates the binding of thyrotropin-releasing hormone in rat pituitary GH4C1 cells.
    Ojala T; Vuorela P; Vuorela H; Törnquist K
    Planta Med; 2001 Apr; 67(3):236-9. PubMed ID: 11345694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of L-type Ca2+ channels in clonal rat pituitary cells by membrane depolarization.
    Liu J; Bangalore R; Rutledge A; Triggle DJ
    Mol Pharmacol; 1994 Jun; 45(6):1198-206. PubMed ID: 8022413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of McN-6186 on voltage-dependent Ca++ channels in heart and pituitary cells.
    Rampe D; Skattebøl A; Triggle DJ; Brown AM
    J Pharmacol Exp Ther; 1989 Jan; 248(1):164-70. PubMed ID: 2536427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of transient-type Ca2+ channels in the sustained increase of Ca2+ level in GH3 cells.
    Suzuki N; Kudo Y; Takagi H; Yoshioka T; Tanakadate A; Kano M
    J Cell Physiol; 1990 Jul; 144(1):62-8. PubMed ID: 2164034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Action of omega-conotoxin on calcium currents of the rat pituitary GH3 cell line].
    Fomina AF; Shirokov RE
    Neirofiziologiia; 1991; 23(2):199-205. PubMed ID: 1652104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Ca(2+)-ATPase in spontaneous oscillations of cytosolic free Ca2+ in GH3 rat pituitary cells.
    Hirono M; Takamura K; Ito Y; Nakano Y; Chikaoka Y; Suzuki N; Yoshioka T
    Cell Calcium; 1999 Feb; 25(2):125-35. PubMed ID: 10326679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the effects of a new Ca2+ channel activator, FPL 64176, in GH3 cells.
    Kunze DL; Rampe D
    Mol Pharmacol; 1992 Oct; 42(4):666-70. PubMed ID: 1279375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-dependent calcium channels regulate GH4 pituitary cell proliferation at two stages of the cell cycle.
    Ramsdell JS
    J Cell Physiol; 1991 Feb; 146(2):197-206. PubMed ID: 1705563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of store-operated Ca2+ channels in adrenocorticotropin release by rat pituitary cells.
    Yamashita M; Oki Y; Iino K; Hayashi C; Yogo K; Matsushita F; Sasaki S; Nakamura H
    Regul Pept; 2009 Aug; 156(1-3):57-64. PubMed ID: 19445971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of praeruptorin-C on cytosolic free calcium in cultured rat heart cells].
    Wu X; Shi CZ; Wu XD
    Yao Xue Xue Bao; 1993; 28(10):728-31. PubMed ID: 7516604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of caffeine on the influx of extracellular calcium in GH4C1 pituitary cells.
    Karhapää L; Törnquist K
    J Cell Physiol; 1997 Apr; 171(1):52-60. PubMed ID: 9119892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies.
    Shafer TJ; Contreras ML; Atchison WD
    Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BAY 41-2272, a potent activator of soluble guanylyl cyclase, stimulates calcium elevation and calcium-activated potassium current in pituitary GH cells.
    Liu YC; Wu SN
    Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1078-87. PubMed ID: 16445574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturisation and validation of a cell-based assay for screening of Ca2+ channel modulators.
    Tammela P; Vuorela P
    J Biochem Biophys Methods; 2004 Jun; 59(3):229-39. PubMed ID: 15165754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of dihydropsoralen in furanocoumarin metabolism.
    Brown SA
    Can J Biochem; 1973 Jul; 51(7):965-8. PubMed ID: 4725361
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro and in vivo effect of normal and irradiated psoralen on glucose oxidation of brain and liver.
    Ali R; Agarwala SC
    Enzyme; 1974; 18(6):321-6. PubMed ID: 4413806
    [No Abstract]   [Full Text] [Related]  

  • 18. Columbianadin: A Novel Coumarin from Heracleum brunonis.
    Khetwal KS; Pathak RP
    Planta Med; 1987 Dec; 53(6):581. PubMed ID: 17269111
    [No Abstract]   [Full Text] [Related]  

  • 19. Anti-Inflammatory Effect of Columbianadin against D-Galactose-Induced Liver Injury In Vivo via the JAK2/STAT3 and JAK2/p38/NF-κB Pathways.
    Ma Z; Peng L; Sheng Y; Chu W; Fu Y
    Pharmaceuticals (Basel); 2024 Mar; 17(3):. PubMed ID: 38543164
    [No Abstract]   [Full Text] [Related]  

  • 20. Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent
    Chang WT; Wu SN
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.