These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 21625538)
21. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings. Karakkat BB; Gold SE; Covert SF Fungal Genet Biol; 2013 Dec; 61():111-9. PubMed ID: 24064149 [TBL] [Abstract][Full Text] [Related]
22. Nuclear status and leaf tumor formation in the Ustilago maydis-maize pathosystem. Lin JS; Happel P; Kahmann R New Phytol; 2021 Jul; 231(1):399-415. PubMed ID: 33786841 [TBL] [Abstract][Full Text] [Related]
23. A small Ustilago maydis effector acts as a novel adhesin for hyphal aggregation in plant tumors. Fukada F; Rössel N; Münch K; Glatter T; Kahmann R New Phytol; 2021 Jul; 231(1):416-431. PubMed ID: 33843063 [TBL] [Abstract][Full Text] [Related]
25. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
26. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Flor-Parra I; Vranes M; Kämper J; Pérez-Martín J Plant Cell; 2006 Sep; 18(9):2369-87. PubMed ID: 16905655 [TBL] [Abstract][Full Text] [Related]
27. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions. Matei A; Doehlemann G Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540 [TBL] [Abstract][Full Text] [Related]
28. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. Wahl R; Wippel K; Goos S; Kämper J; Sauer N PLoS Biol; 2010 Feb; 8(2):e1000303. PubMed ID: 20161717 [TBL] [Abstract][Full Text] [Related]
29. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
30. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Doehlemann G; Reissmann S; Assmann D; Fleckenstein M; Kahmann R Mol Microbiol; 2011 Aug; 81(3):751-66. PubMed ID: 21692877 [TBL] [Abstract][Full Text] [Related]
31. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis. Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837 [TBL] [Abstract][Full Text] [Related]
32. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Weber I; Gruber C; Steinberg G Plant Cell; 2003 Dec; 15(12):2826-42. PubMed ID: 14615599 [TBL] [Abstract][Full Text] [Related]
33. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Lanver D; Mendoza-Mendoza A; Brachmann A; Kahmann R Plant Cell; 2010 Jun; 22(6):2085-101. PubMed ID: 20587773 [TBL] [Abstract][Full Text] [Related]
34. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Basse CW Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197 [TBL] [Abstract][Full Text] [Related]
35. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest. Castanheira S; Pérez-Martín J Plant Signal Behav; 2015; 10(4):e1001227. PubMed ID: 25876077 [TBL] [Abstract][Full Text] [Related]
36. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Müller O; Schreier PH; Uhrig JF Mol Genet Genomics; 2008 Jan; 279(1):27-39. PubMed ID: 17917743 [TBL] [Abstract][Full Text] [Related]
37. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Fernández-Álvarez A; Elías-Villalobos A; Jiménez-Martín A; Marín-Menguiano M; Ibeas JI Plant Cell; 2013 Nov; 25(11):4676-90. PubMed ID: 24280385 [TBL] [Abstract][Full Text] [Related]
38. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related]
39. Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis. Schink KO; Bölker M Mol Biol Cell; 2009 Feb; 20(3):1081-8. PubMed ID: 19073889 [TBL] [Abstract][Full Text] [Related]
40. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Weber I; Assmann D; Thines E; Steinberg G Plant Cell; 2006 Jan; 18(1):225-42. PubMed ID: 16314447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]