BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21625540)

  • 1. Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3.
    Gao XC; Zhou CJ; Zhou ZR; Zhang YH; Zheng XM; Song AX; Hu HY
    PLoS One; 2011; 6(5):e19763. PubMed ID: 21625540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates.
    Yue HW; Hong JY; Zhang SX; Jiang LL; Hu HY
    Sci Rep; 2021 Apr; 11(1):7815. PubMed ID: 33837238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease.
    Howarth JL; Kelly S; Keasey MP; Glover CP; Lee YB; Mitrophanous K; Chapple JP; Gallo JM; Cheetham ME; Uney JB
    Mol Ther; 2007 Jun; 15(6):1100-5. PubMed ID: 17426712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome.
    Westhoff B; Chapple JP; van der Spuy J; Höhfeld J; Cheetham ME
    Curr Biol; 2005 Jun; 15(11):1058-64. PubMed ID: 15936278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system?
    Chapple JP; van der Spuy J; Poopalasundaram S; Cheetham ME
    Biochem Soc Trans; 2004 Aug; 32(Pt 4):640-2. PubMed ID: 15270696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3.
    Berke SJ; Chai Y; Marrs GL; Wen H; Paulson HL
    J Biol Chem; 2005 Sep; 280(36):32026-34. PubMed ID: 16040601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the role of ubiquitin-interacting motifs in ubiquitin binding and ubiquitylation.
    Miller SL; Malotky E; O'Bryan JP
    J Biol Chem; 2004 Aug; 279(32):33528-37. PubMed ID: 15155768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation.
    Gao XC; Zhou CJ; Zhou ZR; Wu M; Cao CY; Hu HY
    J Biol Chem; 2012 Feb; 287(8):6044-52. PubMed ID: 22219199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1.
    Parfitt DA; Michael GJ; Vermeulen EG; Prodromou NV; Webb TR; Gallo JM; Cheetham ME; Nicoll WS; Blatch GL; Chapple JP
    Hum Mol Genet; 2009 May; 18(9):1556-65. PubMed ID: 19208651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ataxin-3 is a multivalent ligand for the parkin Ubl domain.
    Bai JJ; Safadi SS; Mercier P; Barber KR; Shaw GS
    Biochemistry; 2013 Oct; 52(42):7369-76. PubMed ID: 24063750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHIP: A Co-chaperone for Degradation by the Proteasome and Lysosome.
    Chakraborty A; Edkins AL
    Subcell Biochem; 2023; 101():351-387. PubMed ID: 36520313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains.
    Song AX; Zhou CJ; Peng Y; Gao XC; Zhou ZR; Fu QS; Hong J; Lin DH; Hu HY
    PLoS One; 2010 Oct; 5(10):e13202. PubMed ID: 20949063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-chaperone CHIP promotes aggregation of ataxin-1.
    Choi JY; Ryu JH; Kim HS; Park SG; Bae KH; Kang S; Myung PK; Cho S; Park BC; Lee DH
    Mol Cell Neurosci; 2007 Jan; 34(1):69-79. PubMed ID: 17127076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant.
    Rose JM; Novoselov SS; Robinson PA; Cheetham ME
    Hum Mol Genet; 2011 Jan; 20(1):16-27. PubMed ID: 20889486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes.
    Jana NR; Dikshit P; Goswami A; Kotliarova S; Murata S; Tanaka K; Nukina N
    J Biol Chem; 2005 Mar; 280(12):11635-40. PubMed ID: 15664989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain.
    Mao Y; Senic-Matuglia F; Di Fiore PP; Polo S; Hodsdon ME; De Camilli P
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12700-5. PubMed ID: 16118278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain.
    Ottaviani D; Marin O; Arrigoni G; Franchin C; Vilardell J; Sandre M; Li W; Parfitt DA; Pinna LA; Cheetham ME; Ruzzene M
    Hum Mol Genet; 2017 Feb; 26(3):611-623. PubMed ID: 28031292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteotoxic stress increases nuclear localization of ataxin-3.
    Reina CP; Zhong X; Pittman RN
    Hum Mol Genet; 2010 Jan; 19(2):235-49. PubMed ID: 19843543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice.
    Helmlinger D; Bonnet J; Mandel JL; Trottier Y; Devys D
    J Biol Chem; 2004 Dec; 279(53):55969-77. PubMed ID: 15494410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.
    Summers DW; Wolfe KJ; Ren HY; Cyr DM
    PLoS One; 2013; 8(1):e52099. PubMed ID: 23341891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.