These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 21625574)
1. Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. Gratz N; Hartweger H; Matt U; Kratochvill F; Janos M; Sigel S; Drobits B; Li XD; Knapp S; Kovarik P PLoS Pathog; 2011 May; 7(5):e1001345. PubMed ID: 21625574 [TBL] [Abstract][Full Text] [Related]
2. MyD88 and STING signaling pathways are required for IRF3-mediated IFN-β induction in response to Brucella abortus infection. de Almeida LA; Carvalho NB; Oliveira FS; Lacerda TL; Vasconcelos AC; Nogueira L; Bafica A; Silva AM; Oliveira SC PLoS One; 2011; 6(8):e23135. PubMed ID: 21829705 [TBL] [Abstract][Full Text] [Related]
3. Group A streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9. Gratz N; Siller M; Schaljo B; Pirzada ZA; Gattermeier I; Vojtek I; Kirschning CJ; Wagner H; Akira S; Charpentier E; Kovarik P J Biol Chem; 2008 Jul; 283(29):19879-87. PubMed ID: 18480050 [TBL] [Abstract][Full Text] [Related]
4. MyD88 drives the IFN-β response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. Weiss G; Maaetoft-Udsen K; Stifter SA; Hertzog P; Goriely S; Thomsen AR; Paludan SR; Frøkiær H J Immunol; 2012 Sep; 189(6):2860-8. PubMed ID: 22896628 [TBL] [Abstract][Full Text] [Related]
5. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. Bourgeois C; Majer O; Frohner IE; Lesiak-Markowicz I; Hildering KS; Glaser W; Stockinger S; Decker T; Akira S; Müller M; Kuchler K J Immunol; 2011 Mar; 186(5):3104-12. PubMed ID: 21282509 [TBL] [Abstract][Full Text] [Related]
6. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. Stockinger S; Reutterer B; Schaljo B; Schellack C; Brunner S; Materna T; Yamamoto M; Akira S; Taniguchi T; Murray PJ; Müller M; Decker T J Immunol; 2004 Dec; 173(12):7416-25. PubMed ID: 15585867 [TBL] [Abstract][Full Text] [Related]
7. TLR8 Senses Staphylococcus aureus RNA in Human Primary Monocytes and Macrophages and Induces IFN-β Production via a TAK1-IKKβ-IRF5 Signaling Pathway. Bergstrøm B; Aune MH; Awuh JA; Kojen JF; Blix KJ; Ryan L; Flo TH; Mollnes TE; Espevik T; Stenvik J J Immunol; 2015 Aug; 195(3):1100-11. PubMed ID: 26085680 [TBL] [Abstract][Full Text] [Related]
8. Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon β in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection. Oh DS; Kim TH; Lee HK Viruses; 2019 Jan; 11(1):. PubMed ID: 30650519 [TBL] [Abstract][Full Text] [Related]
9. Responses of innate immune cells to group A Streptococcus. Fieber C; Kovarik P Front Cell Infect Microbiol; 2014; 4():140. PubMed ID: 25325020 [TBL] [Abstract][Full Text] [Related]
10. Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in Macrophages via TLRs-mediated signaling. Jang AR; Choi JH; Shin SJ; Park JH Cytokine; 2018 Apr; 104():104-109. PubMed ID: 29046251 [TBL] [Abstract][Full Text] [Related]
11. Crucial Role of Nucleic Acid Sensing via Endosomal Toll-Like Receptors for the Defense of Hafner A; Kolbe U; Freund I; Castiglia V; Kovarik P; Poth T; Herster F; Weigand MA; Weber ANR; Dalpke AH; Eigenbrod T Front Immunol; 2019; 10():198. PubMed ID: 30846984 [No Abstract] [Full Text] [Related]
12. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Ruangkiattikul N; Nerlich A; Abdissa K; Lienenklaus S; Suwandi A; Janze N; Laarmann K; Spanier J; Kalinke U; Weiss S; Goethe R Virulence; 2017 Oct; 8(7):1303-1315. PubMed ID: 28422568 [TBL] [Abstract][Full Text] [Related]
13. TLR-dependent induction of IFN-beta mediates host defense against Trypanosoma cruzi. Koga R; Hamano S; Kuwata H; Atarashi K; Ogawa M; Hisaeda H; Yamamoto M; Akira S; Himeno K; Matsumoto M; Takeda K J Immunol; 2006 Nov; 177(10):7059-66. PubMed ID: 17082622 [TBL] [Abstract][Full Text] [Related]
14. Immune recognition of Streptococcus pyogenes by dendritic cells. Loof TG; Goldmann O; Medina E Infect Immun; 2008 Jun; 76(6):2785-92. PubMed ID: 18391010 [TBL] [Abstract][Full Text] [Related]
15. Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88. Loof TG; Goldmann O; Gessner A; Herwald H; Medina E Am J Pathol; 2010 Feb; 176(2):754-63. PubMed ID: 20019195 [TBL] [Abstract][Full Text] [Related]
16. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production. Siednienko J; Gajanayake T; Fitzgerald KA; Moynagh P; Miggin SM J Immunol; 2011 Feb; 186(4):2514-22. PubMed ID: 21248248 [TBL] [Abstract][Full Text] [Related]
17. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. Harder J; Franchi L; Muñoz-Planillo R; Park JH; Reimer T; Núñez G J Immunol; 2009 Nov; 183(9):5823-9. PubMed ID: 19812205 [TBL] [Abstract][Full Text] [Related]
18. Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci. Famà A; Midiri A; Mancuso G; Biondo C; Lentini G; Galbo R; Giardina MM; De Gaetano GV; Romeo L; Teti G; Beninati C mBio; 2020 Mar; 11(2):. PubMed ID: 32209688 [No Abstract] [Full Text] [Related]
19. MAVS-dependent IRF3/7 bypass of interferon β-induction restricts the response to measles infection in CD150Tg mouse bone marrow-derived dendritic cells. Takaki H; Honda K; Atarashi K; Kobayashi F; Ebihara T; Oshiumi H; Matsumoto M; Shingai M; Seya T Mol Immunol; 2014 Feb; 57(2):100-10. PubMed ID: 24096085 [TBL] [Abstract][Full Text] [Related]
20. Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway. Movert E; Lienard J; Valfridsson C; Nordström T; Johansson-Lindbom B; Carlsson F PLoS Pathog; 2018 Mar; 14(3):e1006969. PubMed ID: 29579113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]