BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 21625673)

  • 21. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase.
    Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M
    Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence heterogeneity of tryptophans in Na,K-ATPase: evidences for temperature-dependent energy transfer.
    Demchenko AP; Gallay J; Vincent M; Apell HJ
    Biophys Chem; 1998 Jun; 72(3):265-83. PubMed ID: 9691270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc.
    Xu J; Toptygin D; Graver KJ; Albertini RA; Savtchenko RS; Meadow ND; Roseman S; Callis PR; Brand L; Knutson JR
    J Am Chem Soc; 2006 Feb; 128(4):1214-21. PubMed ID: 16433538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
    Pan CP; Barkley MD
    Biophys J; 2004 Jun; 86(6):3828-35. PubMed ID: 15189879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent red shift in the fluorescence of tryptophan and 5-fluorotryptophan.
    Toptygin D; Gronenborn AM; Brand L
    J Phys Chem B; 2006 Dec; 110(51):26292-302. PubMed ID: 17181288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins.
    Ababou A; Bombarda E
    Protein Sci; 2001 Oct; 10(10):2102-13. PubMed ID: 11567101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tryptophan photophysics in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1994 Mar; 49(2):113-26. PubMed ID: 8155813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state.
    Vladislav Victorovich K; Tatyana Aleksandrovna K; Victor Vitoldovich P; Aleksander Nicolaevich S; Larisa Valentinovna K; Anastasia Aleksandrovna A
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119784. PubMed ID: 33892250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys Chem; 1987 Oct; 28(1):35-50. PubMed ID: 3689869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropy Spectra of the Solvent-Sensitive Fluorophore 4-Dimethylamino-4'-Cyanostilbene in the Presence of Light Quenching
    Gryczynski I; Kuśba J; Gryczynski Z; Malak H; Lakowicz JR
    J Fluoresc; 1998 Sep; 8(3):253-261. PubMed ID: 32180675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quenching of fluorescence by light: A new method to control the excited-state lifetimes and orientations of fluorophores.
    Gryczynski I; Kuśba J; Bogdanov V; Lakowicz JR
    J Fluoresc; 1994 Mar; 4(1):103-9. PubMed ID: 24233304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Total Emission Time Resolved Decay: a Method for Measurement and Resolution of Broad-Band Emission.
    Panigrahi SK; Mishra AK
    J Fluoresc; 2020 Sep; 30(5):1085-1094. PubMed ID: 32632718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical emission from a small scale model electric arc furnace in 250-600 nm region.
    Mäkinen A; Niskanen J; Tikkala H; Aksela H
    Rev Sci Instrum; 2013 Apr; 84(4):043111. PubMed ID: 23635185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of human immunodeficiency virus-1 (HIV-1) rev by (time-resolved) fluorescence spectroscopy.
    Kungl AJ; Seidel C; Schilk A; Daly TJ; Kauffmann HF; Auer M
    J Fluoresc; 1994 Dec; 4(4):299-302. PubMed ID: 24233603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence kinetics of tryptophan in a heterogeneous environment.
    Rolinski OJ; Vyshemirsky V
    Methods Appl Fluoresc; 2014 Dec; 2(4):045002. PubMed ID: 29148475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct modulation of lanthanide emission at sub-lifetime scales.
    Karaveli S; Weinstein AJ; Zia R
    Nano Lett; 2013 May; 13(5):2264-9. PubMed ID: 23597062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the critical particle size to induce enhanced emission in aggregates of a highly twisted triarylamine.
    Kokil A; Chudomel JM; Yang B; Barnes MD; Lahti PM; Kumar J
    Chemphyschem; 2013 Nov; 14(16):3682-6. PubMed ID: 24123964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secondary emission influenced fluorescence decay of a homogeneous fluorophore solution.
    Kuśba J; Grajek H; Gryczynski I
    Methods Appl Fluoresc; 2013 Nov; 2(1):015001. PubMed ID: 29148455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the emission of tryptophan.
    FUJIMORI E
    Biochim Biophys Acta; 1960 May; 40():251-6. PubMed ID: 13825577
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.