These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21625685)

  • 41. Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases.
    Schwartz SL; Tessema M; Buranda T; Pylypenko O; Rak A; Simons PC; Surviladze Z; Sklar LA; Wandinger-Ness A
    Anal Biochem; 2008 Oct; 381(2):258-66. PubMed ID: 18638444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation.
    Urai Y; Yamawaki M; Watanabe N; Seki Y; Morimoto T; Tago K; Homma K; Sakagami H; Miyamoto Y; Yamauchi J
    Biochem Biophys Res Commun; 2018 Sep; 503(3):2047-2053. PubMed ID: 30078678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM.
    Hinde E; Digman MA; Hahn KM; Gratton E
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):135-40. PubMed ID: 23248275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensors for biosensors: a novel tandem monitoring in a droplet towards efficient screening of robust design and optimal operating conditions.
    Semenova D; Silina YE; Koch M; Micheli L; Zubov A; Gernaey KV
    Analyst; 2019 Apr; 144(8):2511-2522. PubMed ID: 30788470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for the molecular evolution of SRP-GTPase activation by protein.
    Bange G; Kümmerer N; Grudnik P; Lindner R; Petzold G; Kressler D; Hurt E; Wild K; Sinning I
    Nat Struct Mol Biol; 2011 Nov; 18(12):1376-80. PubMed ID: 22056770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The interplay between IQGAP1 and small GTPases in cancer metastasis.
    Peng X; Wang T; Gao H; Yue X; Bian W; Mei J; Zhang Y
    Biomed Pharmacother; 2021 Mar; 135():111243. PubMed ID: 33434854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crosstalk between small GTPases and polarity proteins in cell polarization.
    Iden S; Collard JG
    Nat Rev Mol Cell Biol; 2008 Nov; 9(11):846-59. PubMed ID: 18946474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glucose concentration determination based on silica sol-gel encapsulated glucose oxidase optical biosensor arrays.
    Chang G; Tatsu Y; Goto T; Imaishi H; Morigaki K
    Talanta; 2010 Nov; 83(1):61-5. PubMed ID: 21035644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Giantin interacts with both the small GTPase Rab6 and Rab1.
    Rosing M; Ossendorf E; Rak A; Barnekow A
    Exp Cell Res; 2007 Jul; 313(11):2318-25. PubMed ID: 17475246
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization.
    Peurois F; Peyroche G; Cherfils J
    Biochem Soc Trans; 2019 Feb; 47(1):13-22. PubMed ID: 30559268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.
    Zhuang SH; Guo XX; Wu YS; Chen ZH; Chen Y; Ren ZQ; Liu TC
    J Fluoresc; 2016 Jan; 26(1):317-22. PubMed ID: 26563227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities.
    Mondal S; Hsiao K; Goueli SA
    Assay Drug Dev Technol; 2015 Oct; 13(8):444-55. PubMed ID: 26167953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Föster resonance energy transfer (FRET) biosensor.
    Nishioka T; Frohman MA; Matsuda M; Kiyokawa E
    J Biol Chem; 2010 Nov; 285(46):35979-87. PubMed ID: 20826779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal control of small GTPases with light using the LOV domain.
    Wu YI; Wang X; He L; Montell D; Hahn KM
    Methods Enzymol; 2011; 497():393-407. PubMed ID: 21601095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small GTPases: versatile signaling switches in plants.
    Yang Z
    Plant Cell; 2002; 14 Suppl(Suppl):S375-88. PubMed ID: 12045289
    [No Abstract]   [Full Text] [Related]  

  • 57. Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster Resonance Energy Transfer (FRET): Implications for signaling and pharmacology.
    Kiyokawa E; Aoki K; Nakamura T; Matsuda M
    Annu Rev Pharmacol Toxicol; 2011; 51():337-58. PubMed ID: 20936947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes.
    Jiang SY; Ramachandran S
    Physiol Genomics; 2006 Feb; 24(3):235-51. PubMed ID: 16332933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small GTPase and regulation of inflammation response in atherogenesis.
    Lu Y; Peng W; Xu Y
    J Cardiovasc Pharmacol; 2013 Oct; 62(4):331-40. PubMed ID: 23921305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A luminescent biosensor with increased dynamic range for intracellular cAMP.
    Binkowski BF; Butler BL; Stecha PF; Eggers CT; Otto P; Zimmerman K; Vidugiris G; Wood MG; Encell LP; Fan F; Wood KV
    ACS Chem Biol; 2011 Nov; 6(11):1193-7. PubMed ID: 21932825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.