These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49 related articles for article (PubMed ID: 2162582)
1. [Cytochrome P-450 and oxidative modification of macromolecules]. Archakov AI; Adrianov NV; Karuzina II Vestn Akad Med Nauk SSSR; 1990; (2):21-7. PubMed ID: 2162582 [TBL] [Abstract][Full Text] [Related]
2. [Self-inactivation of cytochrome P-450 2B4 during catalytic cycle in the monooxygenase reconstituted system]. Zgoda VG; Karuzina II; Archakov AI Vopr Med Khim; 1997; 43(4):217-25. PubMed ID: 9312936 [TBL] [Abstract][Full Text] [Related]
3. Two sites of azo reduction in the monooxygenase system. Peterson FJ; Holtzman JL; Crankshaw D; Mason RP Mol Pharmacol; 1988 Oct; 34(4):597-603. PubMed ID: 2845254 [TBL] [Abstract][Full Text] [Related]
4. [Oxidative modification of cytochrome P450 and other macromolecules during its turnover]. Archakov AI; Zgoda VG; Karuzina II Vopr Med Khim; 1998; 44(1):3-27. PubMed ID: 9575609 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P-450 reductase and partially purified cytochrome P-450. Oxygen and carbon monoxide sensitivity and stimulation by FAD and FMN. Levine WG; Raza H Drug Metab Dispos; 1988; 16(3):441-8. PubMed ID: 2900738 [TBL] [Abstract][Full Text] [Related]
6. [Hydroxylation of aniline and aminoantipyrine derivatives (1-phenyl-2,3-dimethylaminopyrazolon-5) in liver endoplasmic reticulum]. Archakov AI; Karuzina II; Tveritinov VN; Kokareva IS Biokhimiia; 1975; 40(1):32-9. PubMed ID: 1139001 [TBL] [Abstract][Full Text] [Related]
7. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5. Shaw PM; Hosea NA; Thompson DV; Lenius JM; Guengerich FP Arch Biochem Biophys; 1997 Dec; 348(1):107-15. PubMed ID: 9390180 [TBL] [Abstract][Full Text] [Related]
8. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of elementary steps in the cytochrome P-450 reaction sequence. VI. Model treatment of the NADPH-dependent first electron transfer reaction between cytochrome P-450 reductase and cytochrome P-450 LM2 in solution. Rohde K; Blanck J; Ruckpaul K Biomed Biochim Acta; 1983; 42(6):651-62. PubMed ID: 6416251 [TBL] [Abstract][Full Text] [Related]
10. Recombinant human cytochrome P450 1A2 and an N-terminal-truncated form: construction, purification, aggregation properties, and interactions with flavodoxin, ferredoxin, and NADPH-cytochrome P450 reductase. Dong MS; Yamazaki H; Guo Z; Guengerich FP Arch Biochem Biophys; 1996 Mar; 327(1):11-9. PubMed ID: 8615680 [TBL] [Abstract][Full Text] [Related]
11. [Effect of monooxygenase reactions catalyzed by cytochrome P-450 on the microsomal membrane]. Karuzina II; Mengazetdinov DE; Kapitanov AB; Zhukov AA; Ivanova LI Biokhimiia; 1987 Jul; 52(7):1090-6. PubMed ID: 3663748 [TBL] [Abstract][Full Text] [Related]
12. Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P-450. Jansson I; Schenkman JB Drug Metab Dispos; 1987; 15(3):344-8. PubMed ID: 2886309 [TBL] [Abstract][Full Text] [Related]
13. [Cytochrome P-450 distribution in endoplasmic reticulum membranes of rat liver]. Al'terman MA; Marekushev SA; Levchenko LA; Raevskiĭ AV; Devichenskiĭ VM Biokhimiia; 1981 Feb; 46(2):222-9. PubMed ID: 7248379 [TBL] [Abstract][Full Text] [Related]
14. N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P-450 2C3 or human liver microsomes, microsomal retroreduction, and further oxidative transformation of the formed amidoximes. Possible relationship to the biological oxidation of arginine to NG-hydroxyarginine, citrulline, and nitric oxide. Clement B; Jung F Drug Metab Dispos; 1994; 22(3):486-97. PubMed ID: 8070328 [TBL] [Abstract][Full Text] [Related]
15. Immunochemical detection and quantitation of microsomal cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate:cytochrome P-450 reductase in the rat ventral prostate. Haaparanta T; Halpert J; Glaumann H; Gustafsson JA Cancer Res; 1983 Nov; 43(11):5131-7. PubMed ID: 6413054 [TBL] [Abstract][Full Text] [Related]
16. Oxidative cleavage of esters and amides to carbonyl products by cytochrome P450. Peng HM; Raner GM; Vaz AD; Coon MJ Arch Biochem Biophys; 1995 Apr; 318(2):333-9. PubMed ID: 7733661 [TBL] [Abstract][Full Text] [Related]
17. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
18. Triphenyltin acetate-mediated in vitro inactivation of rat liver cytochrome P-450. Nebbia C; Ceppa L; Dacasto M; Carletti M J Toxicol Environ Health A; 1999 Mar; 56(6):433-47. PubMed ID: 10096365 [TBL] [Abstract][Full Text] [Related]
19. [Oxidative modification of cytochrome P-450 during its function. II. Study of the mechanism of cytochrome P-450 LM2 inactivation in a soluble reconstructed monooxygenase system]. Tret'iakova LZ; Adrianov NV; Voronin EM; Dovgiĭ AI; Skotselias ED; Archakov AI Biokhimiia; 1991 Jul; 56(7):1200-8. PubMed ID: 1932347 [TBL] [Abstract][Full Text] [Related]
20. [Inactivation of cytochrome P-450 in hydroxylase reactions]. Karuzina II; Archakov AI Biokhimiia; 1985 Nov; 50(11):1805-10. PubMed ID: 4063403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]