BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21626282)

  • 1. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.
    Wallenius K; Lappi K; Mikkonen A; Wickström A; Vaalama A; Lehtinen T; Suominen L
    Biodegradation; 2012 Feb; 23(1):47-55. PubMed ID: 21626282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplate MPN-enumeration of monocyclic- and dicyclic-aromatic hydrocarbon degraders via substrate phase-partitioning.
    Johnsen AR; Henriksen S
    Biodegradation; 2009 Jul; 20(4):581-9. PubMed ID: 19043785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community.
    Gomes NC; Kosheleva IA; Abraham WR; Smalla K
    FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Identification of the key genes of naphthalene catabolism in soil DNA].
    Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil.
    Singleton DR; Powell SN; Sangaiah R; Gold A; Ball LM; Aitken MD
    Appl Environ Microbiol; 2005 Mar; 71(3):1202-9. PubMed ID: 15746319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites.
    Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorobenzene biodegradation under consecutive aerobic-anaerobic conditions.
    Balcke GU; Turunen LP; Geyer R; Wenderoth DF; Schlosser D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):109-20. PubMed ID: 19712388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method.
    Mills AL; Breuil C; Colwell RR
    Can J Microbiol; 1978 May; 24(5):522-7. PubMed ID: 350362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil.
    Ogunseitan OA; Delgado IL; Tsai YL; Olson BH
    Appl Environ Microbiol; 1991 Oct; 57(10):2873-9. PubMed ID: 1746947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil.
    Patterson CJ; Semple KT; Paton GI
    FEMS Microbiol Lett; 2004 Dec; 241(2):215-20. PubMed ID: 15598535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of Pseudomonas sp. STM 997 from soil sample having potentiality to degrade 3,6-dimethyl-1-keto-1,2,3,4-tetrahydrocarbazole: a novel approach.
    Chakraborty B; Chakraborty S; Basu AK; Aditya B; Sinha TP; Dhar TM; Saha C
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1765-77. PubMed ID: 22987067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The most-probable-number enumeration of dichlobenil and 2,6-dichlorobenzamide (BAM) degrading microbes in Finnish aquifers.
    Pukkila V; Gustafsson J; Tuominen J; Aallonen A; Kontro MH
    Biodegradation; 2009 Sep; 20(5):679-86. PubMed ID: 19326247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the number of polyhydroxyalkanoate (PHA)-degraders in soil and isolation of degraders based on the method of most probable number (MPN) using PHA-film.
    Song C; Uchida U; Ono S; Shimasaki C; Inoue M
    Biosci Biotechnol Biochem; 2001 May; 65(5):1214-7. PubMed ID: 11440143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment.
    Juhanson J; Truu J; Heinaru E; Heinaru A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):446-55. PubMed ID: 19732146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.
    Feld L; Nielsen TK; Hansen LH; Aamand J; Albers CN
    Appl Environ Microbiol; 2016 Feb; 82(3):878-87. PubMed ID: 26590282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of naphthalene on microbial community composition in the Delaware estuary.
    Castle DM; Montgomery MT; Kirchman DL
    FEMS Microbiol Ecol; 2006 Apr; 56(1):55-63. PubMed ID: 16542405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.