These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2162640)

  • 1. Calcium regulation of the first cell cycle of the sea urchin embryo.
    Steinhardt RA
    Ann N Y Acad Sci; 1990; 582():199-206. PubMed ID: 2162640
    [No Abstract]   [Full Text] [Related]  

  • 2. Intracellular free calcium and the first cell cycle of the sea-urchin embryo (Lytechinus pictus).
    Steinhardt RA
    J Reprod Fertil Suppl; 1990; 42():191-7. PubMed ID: 1963899
    [No Abstract]   [Full Text] [Related]  

  • 3. Okadaic acid suppresses calcium regulation of mitosis onset in sea urchin embryos.
    Patel R; Whitaker M
    Cell Regul; 1991 May; 2(5):391-402. PubMed ID: 1654128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown.
    Baitinger C; Alderton J; Poenie M; Schulman H; Steinhardt RA
    J Cell Biol; 1990 Nov; 111(5 Pt 1):1763-73. PubMed ID: 2229172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo.
    Steinhardt RA; Alderton J
    Nature; 1988 Mar; 332(6162):364-6. PubMed ID: 3127727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP kinase activity increases during mitosis in early sea urchin embryos.
    Philipova R; Whitaker M
    J Cell Sci; 1998 Sep; 111 ( Pt 17)():2497-505. PubMed ID: 9701549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos.
    Wilding M; Wright EM; Patel R; Ellis-Davies G; Whitaker M
    J Cell Biol; 1996 Oct; 135(1):191-9. PubMed ID: 8858173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of PLCgamma and nuclear envelopes in telophase of sea urchin embryos.
    Chatzidimitriadou Z; Poccia D
    Mol Reprod Dev; 2010 Sep; 77(9):737. PubMed ID: 20629197
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium and mitosis.
    Whitaker M; Larman MG
    Semin Cell Dev Biol; 2001 Feb; 12(1):53-8. PubMed ID: 11162747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sea urchin kinome: a first look.
    Bradham CA; Foltz KR; Beane WS; Arnone MI; Rizzo F; Coffman JA; Mushegian A; Goel M; Morales J; Geneviere AM; Lapraz F; Robertson AJ; Kelkar H; Loza-Coll M; Townley IK; Raisch M; Roux MM; Lepage T; Gache C; McClay DR; Manning G
    Dev Biol; 2006 Dec; 300(1):180-93. PubMed ID: 17027740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos.
    Morris RL; English CN; Lou JE; Dufort FJ; Nordberg J; Terasaki M; Hinkle B
    Dev Biol; 2004 Oct; 274(1):56-69. PubMed ID: 15355788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new G-stretch-DNA-binding protein, Unichrom, displays cell-cycle-dependent expression in sea urchin embryos.
    Moritani K; Tagashira H; Shimotori T; Sakamoto N; Tanaka S; Takata K; Mitsunaga-Nakatsubo K; Bojiiwa Y; Yamamoto T; Shimada H; Akasaka K
    Dev Growth Differ; 2004 Aug; 46(4):335-41. PubMed ID: 15367201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of free calcium levels with stages of the cell division cycle.
    Poenie M; Alderton J; Tsien RY; Steinhardt RA
    Nature; 1985 May 9-15; 315(6015):147-9. PubMed ID: 3838803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of mitochondrial respiration in eggs and embryos of sea urchin.
    Yasumasu I
    Zygote; 2000; 8 Suppl 1():S3-4. PubMed ID: 11191297
    [No Abstract]   [Full Text] [Related]  

  • 15. A 62-kD protein required for mitotic progression is associated with the mitotic apparatus during M-phase and with the nucleus during interphase.
    Johnston JA; Sloboda RD
    J Cell Biol; 1992 Nov; 119(4):843-54. PubMed ID: 1429839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle.
    Vlahou A; Flytzanis CN
    Dev Biol; 2000 Feb; 218(2):284-98. PubMed ID: 10656770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].
    Bellé R; Le Bouffant R; Morales J; Cosson B; Cormier P; Mulner-Lorillon O
    J Soc Biol; 2007; 201(3):317-27. PubMed ID: 18157084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of protein kinase C alters p34(cdc2) phosphorylation state and kinase activity in early sea urchin embryos by abolishing intracellular Ca2+ transients.
    Suprynowicz FA; Groigno L; Whitaker M; Miller FJ; Sluder G; Sturrock J; Whalley T
    Biochem J; 2000 Jul; 349(Pt 2):489-99. PubMed ID: 10880348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and calmodulin-dependent phosphorylation of a 62 kd protein induces microtubule depolymerization in sea urchin mitotic apparatuses.
    Dinsmore JH; Sloboda RD
    Cell; 1988 Jun; 53(5):769-80. PubMed ID: 2836067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol.
    Becchetti A; Whitaker M
    Development; 1997 Mar; 124(6):1099-107. PubMed ID: 9102297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.