These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21626637)
1. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein. Fischer A; Seitz T; Lochner A; Sterner R; Merkl R; Bocola M Chembiochem; 2011 Jul; 12(10):1544-50. PubMed ID: 21626637 [TBL] [Abstract][Full Text] [Related]
2. Stabilisation of a (betaalpha)8-barrel protein designed from identical half barrels. Seitz T; Bocola M; Claren J; Sterner R J Mol Biol; 2007 Sep; 372(1):114-29. PubMed ID: 17631894 [TBL] [Abstract][Full Text] [Related]
3. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac. Cieplak AS; Sürmeli NB J Org Chem; 2004 May; 69(10):3250-61. PubMed ID: 15132529 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Masso M; Vaisman II Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749 [TBL] [Abstract][Full Text] [Related]
5. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Potapov V; Cohen M; Schreiber G Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092 [TBL] [Abstract][Full Text] [Related]
6. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118 [TBL] [Abstract][Full Text] [Related]
7. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor. Marrero-Ponce Y; Medina-Marrero R; Castillo-Garit JA; Romero-Zaldivar V; Torrens F; Castro EA Bioorg Med Chem; 2005 Apr; 13(8):3003-15. PubMed ID: 15781410 [TBL] [Abstract][Full Text] [Related]
8. High-resolution crystal structure of an artificial (betaalpha)(8)-barrel protein designed from identical half-barrels. Höcker B; Lochner A; Seitz T; Claren J; Sterner R Biochemistry; 2009 Feb; 48(6):1145-7. PubMed ID: 19166324 [TBL] [Abstract][Full Text] [Related]
9. CUPSAT: prediction of protein stability upon point mutations. Parthiban V; Gromiha MM; Schomburg D Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W239-42. PubMed ID: 16845001 [TBL] [Abstract][Full Text] [Related]
10. Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels. Sperl JM; Rohweder B; Rajendran C; Sterner R FEBS Lett; 2013 Sep; 587(17):2798-805. PubMed ID: 23806364 [TBL] [Abstract][Full Text] [Related]
11. High-throughput screening for enhanced protein stability. Bommarius AS; Broering JM; Chaparro-Riggers JF; Polizzi KM Curr Opin Biotechnol; 2006 Dec; 17(6):606-10. PubMed ID: 17049838 [TBL] [Abstract][Full Text] [Related]
12. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1. Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227 [TBL] [Abstract][Full Text] [Related]
13. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development. Parthiban V; Gromiha MM; Abhinandan M; Schomburg D BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837 [TBL] [Abstract][Full Text] [Related]
14. Performance of protein stability predictors. Khan S; Vihinen M Hum Mutat; 2010 Jun; 31(6):675-84. PubMed ID: 20232415 [TBL] [Abstract][Full Text] [Related]
15. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. Cui Q; Sulea T; Schrag JD; Munger C; Hung MN; Naïm M; Cygler M; Purisima EO J Mol Biol; 2008 Jun; 379(4):787-802. PubMed ID: 18479705 [TBL] [Abstract][Full Text] [Related]
17. Can computationally designed protein sequences improve secondary structure prediction? Bondugula R; Wallqvist A; Lee MS Protein Eng Des Sel; 2011 May; 24(5):455-61. PubMed ID: 21282334 [TBL] [Abstract][Full Text] [Related]
18. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
19. Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module. Kramer MA; Wetzel SK; Plückthun A; Mittl PR; Grütter MG J Mol Biol; 2010 Dec; 404(3):381-91. PubMed ID: 20851127 [TBL] [Abstract][Full Text] [Related]
20. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction. Ishida T J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]