These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 21626954)

  • 1. Classification of scattering media within benign and malignant breast tumors based on ultrasound texture-feature-based and Nakagami-parameter images.
    Liao YY; Tsui PH; Li CH; Chang KJ; Kuo WH; Chang CC; Yeh CK
    Med Phys; 2011 Apr; 38(4):2198-207. PubMed ID: 21626954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization.
    Tsui PH; Liao YY; Chang CC; Kuo WH; Chang KJ; Yeh CK
    IEEE Trans Med Imaging; 2010 Feb; 29(2):513-22. PubMed ID: 20129851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast tumor classification using different features of quantitative ultrasound parametric images.
    Hsu SM; Kuo WH; Kuo FC; Liao YY
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):623-633. PubMed ID: 30617720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Texture feature analysis for breast ultrasound image enhancement.
    Liao YY; Wu JC; Li CH; Yeh CK
    Ultrason Imaging; 2011 Oct; 33(4):264-78. PubMed ID: 22518956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic Nakagami imaging: a strategy to visualize the scatterer properties of benign and malignant breast tumors.
    Tsui PH; Yeh CK; Liao YY; Chang CC; Kuo WH; Chang KJ; Chen CN
    Ultrasound Med Biol; 2010 Feb; 36(2):209-17. PubMed ID: 20018436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-compounding technique with ultrasound Nakagami imaging for distinguishing between benign and malignant breast tumors.
    Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK
    Med Phys; 2012 May; 39(5):2325-33. PubMed ID: 22559602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of breast masses in ultrasonic B-mode images using a compounding technique in the Nakagami distribution domain.
    Shankar PM; Dumane VA; Piccoli CW; Reid JM; Forsberg F; Goldberg BB
    Ultrasound Med Biol; 2002 Oct; 28(10):1295-300. PubMed ID: 12467856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of ultrasonic B mode images of the breast using frequency diversity and Nakagami statistics.
    Dumane VA; Shankar PM; Piccoli CW; Reid JM; Genis V; Forsberg F; Goldberg BB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):664-8. PubMed ID: 12046943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study.
    Tsui PH; Yeh CK; Chang CC; Liao YY
    Phys Med Biol; 2008 Nov; 53(21):6027-44. PubMed ID: 18836223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does texture analysis improve breast ultrasound precision?
    Bader W; Böhmer S; van Leeuwen P; Hackmann J; Westhof G; Hatzmann W
    Ultrasound Obstet Gynecol; 2000 Apr; 15(4):311-6. PubMed ID: 10895451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features.
    Moon WK; Huang YS; Lo CM; Huang CS; Bae MS; Kim WH; Chen JH; Chang RF
    Med Phys; 2015 Jun; 42(6):3024-35. PubMed ID: 26127055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artifact reduction of ultrasound Nakagami imaging by combining multifocus image reconstruction and the noise-assisted correlation algorithm.
    Tsui PH; Tsai YW
    Ultrason Imaging; 2015 Jan; 37(1):53-69. PubMed ID: 24626567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Texture quantified from ultrasound Nakagami parametric images is diagnostically relevant for breast tumor characterization.
    Muhtadi S; Razzaque RR; Chowdhury A; Garra BS; Kaisar Alam S
    J Med Imaging (Bellingham); 2023 Feb; 10(Suppl 2):S22410. PubMed ID: 37360323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of breast tumors using sonographic texture analysis.
    Ardakani AA; Gharbali A; Mohammadi A
    J Ultrasound Med; 2015 Feb; 34(2):225-31. PubMed ID: 25614395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters.
    Byra M; Nowicki A; Wróblewska-Piotrzkowska H; Dobruch-Sobczak K
    Med Phys; 2016 Oct; 43(10):5561. PubMed ID: 27782690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions.
    Osapoetra LO; Chan W; Tran W; Kolios MC; Czarnota GJ
    PLoS One; 2020; 15(12):e0244965. PubMed ID: 33382837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer aided classification of masses in ultrasonic mammography.
    Dumane VA; Shankar PM; Piccoli CW; Reid JM; Forsberg F; Goldberg BB
    Med Phys; 2002 Sep; 29(9):1968-73. PubMed ID: 12349916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging local scatterer concentrations by the Nakagami statistical model.
    Tsui PH; Chang CC
    Ultrasound Med Biol; 2007 Apr; 33(4):608-19. PubMed ID: 17343979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound classification of breast masses using a comprehensive Nakagami imaging and machine learning framework.
    Chowdhury A; Razzaque RR; Muhtadi S; Shafiullah A; Ul Islam Abir E; Garra BS; Kaisar Alam S
    Ultrasonics; 2022 Aug; 124():106744. PubMed ID: 35390626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.