BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2162696)

  • 1. Oxygen derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction.
    Key LL; Ries WL; Taylor RG; Hays BD; Pitzer BL
    Bone; 1990; 11(2):115-9. PubMed ID: 2162696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic.
    Ries WL; Key LL; Rodriguiz RM
    J Bone Miner Res; 1992 Aug; 7(8):931-9. PubMed ID: 1442207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo.
    Garrett IR; Boyce BF; Oreffo RO; Bonewald L; Poser J; Mundy GR
    J Clin Invest; 1990 Mar; 85(3):632-9. PubMed ID: 2312718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide and bone resorption.
    Key LL; Wolf WC; Gundberg CM; Ries WL
    Bone; 1994; 15(4):431-6. PubMed ID: 7917583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of avian osteoclast bone resorption by monoclonal antibody 121F: a mechanism involving the osteoclast free radical system.
    Collin-Osdoby P; Li L; Rothe L; Anderson F; Kirsch D; Oursler MJ; Osdoby P
    J Bone Miner Res; 1998 Jan; 13(1):67-78. PubMed ID: 9443792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide-dependent and superoxide-independent pathways for reduction of nitroblue tetrazolium in isolated rat cardiac myocytes.
    Thayer WS
    Arch Biochem Biophys; 1990 Jan; 276(1):139-45. PubMed ID: 1688694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lycopene I--effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures.
    Rao LG; Krishnadev N; Banasikowska K; Rao AV
    J Med Food; 2003; 6(2):69-78. PubMed ID: 12935316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radicals generated by electrolysis reduces nitro blue tetrazolium in isolated rat heart.
    Chahine R; Huet MP; Oliva L; Nadeau R
    Exp Toxicol Pathol; 1997 Feb; 49(1-2):91-5. PubMed ID: 9085082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of nitroblue tetrazolium reduction in mouse peritoneal macrophages by tumour promoters and inhibition of the induced nitroblue tetrazolium reduction by some inhibitors.
    Ohkawa Y; Iwata K; Shibuya H; Inui N
    Cancer Lett; 1985 Jul; 27(3):261-7. PubMed ID: 2990669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: a simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples.
    Xu C; Liu S; Liu Z; Song F; Liu S
    Anal Chim Acta; 2013 Sep; 793():53-60. PubMed ID: 23953206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of the bone-derived growth factors osteoinductive factor and transforming growth factor-beta on isolated osteoclasts.
    Oreffo RO; Bonewald L; Kukita A; Garrett IR; Seyedin SM; Rosen D; Mundy GR
    Endocrinology; 1990 Jun; 126(6):3069-75. PubMed ID: 1693566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative determination of superoxide in plant leaves using a modified NBT staining method.
    Bournonville CF; Díaz-Ricci JC
    Phytochem Anal; 2011; 22(3):268-71. PubMed ID: 21360621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic cultures.
    Chan PH; Chen SF; Yu AC
    J Neurochem; 1988 Apr; 50(4):1185-93. PubMed ID: 2831299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitroblue tetrazolium (NBT) reduction by bacteria. Some properties of the reaction and its possible use.
    Urban T; Jarstrand C
    Acta Pathol Microbiol Scand B; 1979 Aug; 87(4):227-33. PubMed ID: 115226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells.
    Choi HS; Kim JW; Cha YN; Kim C
    J Immunoassay Immunochem; 2006; 27(1):31-44. PubMed ID: 16450867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium.
    Picker SD; Fridovich I
    Arch Biochem Biophys; 1984 Jan; 228(1):155-8. PubMed ID: 6320732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoclast radical interactions: NADPH causes pulsatile release of NO and stimulates superoxide production.
    Silverton SF; Mesaros S; Markham GD; Malinski T
    Endocrinology; 1995 Nov; 136(11):5244-7. PubMed ID: 7588266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonmitochondrial oxygen utilization by rabbit blastocysts and surface production of superoxide radicals.
    Manes C; Lai NC
    J Reprod Fertil; 1995 May; 104(1):69-75. PubMed ID: 7636807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyurea, methotrexate and adriblastine can mediate non-enzymatic reduction of nitroblue tetrazolium with NADH which is inhibited by superoxide dismutase.
    Przybyszewski WM; Malec J
    Biochem Pharmacol; 1987 Oct; 36(19):3312-4. PubMed ID: 2822050
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate.
    Ponti V; Dianzani MU; Cheeseman K; Slater TF
    Chem Biol Interact; 1978 Dec; 23(3):281-91. PubMed ID: 214250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.