These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21627133)

  • 1. Laser-induced nanoscale superhydrophobic structures on metal surfaces.
    Jagdheesh R; Pathiraj B; Karatay E; Römer GR; Huis in't Veld AJ
    Langmuir; 2011 Jul; 27(13):8464-9. PubMed ID: 21627133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a superhydrophobic Al₂O₃ surface using picosecond laser pulses.
    Jagdheesh R
    Langmuir; 2014 Oct; 30(40):12067-73. PubMed ID: 25251909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Er:YAG laser irradiation on surface properties of Ti-6Al-4V machined and hydroxyapatite coated.
    Simões IG; Kreve S; Cruz MAE; Botelho AL; Ramos AP; Dos Reis AC; Valente MLDC
    Lasers Med Sci; 2023 Jan; 38(1):48. PubMed ID: 36689006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Superhydrophobic Ti-6Al-4V Surfaces with Single-Scale Micotextures by using Two-Step Laser Irradiation and Silanization.
    He H; Hua R; Li X; Wang C; Ning X; Sun L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
    Singh R; Kurella A; Dahotre NB
    J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.
    Guilherme AS; Henriques GE; Zavanelli RA; Mesquita MF
    J Prosthet Dent; 2005 Apr; 93(4):378-85. PubMed ID: 15798689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Wear characteristics of different metal-polyethylene beating surfaces. An experimental study of a new model of knee prosthesis].
    Farizon F; Aurelle JL; Rieu J; Bousquet G
    Rev Chir Orthop Reparatrice Appar Mot; 1996; 82(6):522-8. PubMed ID: 9122523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L.
    Faas S; Bielke U; Weber R; Graf T
    Sci Rep; 2019 Feb; 9(1):1933. PubMed ID: 30760756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned superhydrophobic metallic surfaces.
    Kietzig AM; Hatzikiriakos SG; Englezos P
    Langmuir; 2009 Apr; 25(8):4821-7. PubMed ID: 19267439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A
    Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue properties of carbon- and porous-coated Ti-6Al-4V alloy.
    Cook SD; Georgette FS; Skinner HB; Haddad RJ
    J Biomed Mater Res; 1984; 18(5):497-512. PubMed ID: 6736080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method.
    Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H
    Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces.
    Boreyko JB; Baker CH; Poley CR; Chen CH
    Langmuir; 2011 Jun; 27(12):7502-9. PubMed ID: 21604679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.