These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21627160)

  • 41. Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends.
    Edo M; Ortuño N; Persson PE; Conesa JA; Jansson S
    Chemosphere; 2018 Jul; 203():506-513. PubMed ID: 29649692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification of an environmental surveillance program to monitor PCDD/Fs and metals around a municipal solid waste incinerator.
    Vilavert L; Nadal M; Mari M; Schuhmacher M; Domingo JL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1343-52. PubMed ID: 20183491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants.
    Caserini S; Cernuschi S; Giugliano M; Grosso M; Lonati G; Mattaini P
    Chemosphere; 2004 Mar; 54(9):1279-87. PubMed ID: 14659420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation, release and control of dioxins in cement kilns.
    Karstensen KH
    Chemosphere; 2008 Jan; 70(4):543-60. PubMed ID: 17698165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.
    Lv D; Zhu T; Liu R; Lv Q; Sun Y; Wang H; Liu Y; Zhang F
    Chemosphere; 2016 Sep; 159():595-601. PubMed ID: 27343866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PAHs and heavy metals in the surrounding soil of a cement plant Co-Processing hazardous waste.
    Wang C; Yang Z; Zhang Y; Zhang Z; Cai Z
    Chemosphere; 2018 Nov; 210():247-256. PubMed ID: 30005346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China.
    Zhang G; Hai J; Cheng J
    Waste Manag; 2012 Jun; 32(6):1156-62. PubMed ID: 22386986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gaseous contaminant emissions as affected by burning scrap tires in cement manufacturing.
    Carrasco F; Bredin N; Heitz M
    J Environ Qual; 2002; 31(5):1484-90. PubMed ID: 12371165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sludge incineration tests on circulating fluidised bed furnace.
    Lotito V; Mininni G; Di Pinto AC; Spinosa L
    Water Sci Technol; 2001; 44(2-3):409-16. PubMed ID: 11548013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incinerator toxic emissions: a brief summary of human health effects with a note on regulatory control.
    Rowat SC
    Med Hypotheses; 1999 May; 52(5):389-96. PubMed ID: 10416945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Site-specific health risk assessment of dioxins and furans in an industrial region with numerous emission sources.
    Kao WY; Ma HW; Wang LC; Chang-Chien GP
    J Hazard Mater; 2007 Jul; 145(3):471-81. PubMed ID: 17208365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polycyclic aromatic hydrocarbon emissions from clinical waste incineration.
    Sadhra S; Wheatley AD
    Chemosphere; 2007 Feb; 66(11):2177-84. PubMed ID: 17113623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pollutants in incineration flue gas.
    Wey MY; Ou WY; Liu ZS; Tseng HH; Yang WY; Chiang BC
    J Hazard Mater; 2001 Apr; 82(3):247-62. PubMed ID: 11240066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins/dibenzofurans in ash from different units in a municipal solid waste incinerator.
    Chung TL; Liao CJ; Chang-Chien GP
    Waste Manag Res; 2010 Sep; 28(9):789-99. PubMed ID: 20022903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper.
    Takasuga T; Umetsu N; Makino T; Tsubota K; Sajwan KS; Kumar KS
    Arch Environ Contam Toxicol; 2007 Jul; 53(1):8-21. PubMed ID: 17502979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emissions from open burning of simulated military waste from forward operating bases.
    Aurell J; Gullett BK; Yamamoto D
    Environ Sci Technol; 2012 Oct; 46(20):11004-12. PubMed ID: 22992062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emissions of PCDD/Fs from municipal solid waste incinerators in China.
    Ni Y; Zhang H; Fan S; Zhang X; Zhang Q; Chen J
    Chemosphere; 2009 May; 75(9):1153-8. PubMed ID: 19304311
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Patterns of PCDD/Fs, PCBs and PCNs homologues in fly ash from cement kilns].
    Zhang J; Ni YW; Zhang HJ; Zhang XP; Zhang Q; Chen JP
    Huan Jing Ke Xue; 2009 Feb; 30(2):568-73. PubMed ID: 19402517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.