BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 21627173)

  • 1. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques.
    Delehanty JB; Bradburne CE; Susumu K; Boeneman K; Mei BC; Farrell D; Blanco-Canosa JB; Dawson PE; Mattoussi H; Medintz IL
    J Am Chem Soc; 2011 Jul; 133(27):10482-9. PubMed ID: 21627173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides.
    Medintz IL; Pons T; Delehanty JB; Susumu K; Brunel FM; Dawson PE; Mattoussi H
    Bioconjug Chem; 2008 Sep; 19(9):1785-95. PubMed ID: 18681468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeling of mesenchymal stem cells with bioconjugated quantum dots.
    Shah BS; Mao JJ
    Methods Mol Biol; 2011; 680():61-75. PubMed ID: 21153373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of micelles and quantum dots in cells.
    Maysinger D; Lovrić J; Eisenberg A; Savić R
    Eur J Pharm Biopharm; 2007 Mar; 65(3):270-81. PubMed ID: 17027243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes.
    Medintz IL; Farrell D; Susumu K; Trammell SA; Deschamps JR; Brunel FM; Dawson PE; Mattoussi H
    Anal Chem; 2009 Jun; 81(12):4831-9. PubMed ID: 19445483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics.
    Chen LQ; Xiao SJ; Hu PP; Peng L; Ma J; Luo LF; Li YF; Huang CZ
    Anal Chem; 2012 Apr; 84(7):3099-110. PubMed ID: 22423600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term multiple color imaging of live cells using quantum dot bioconjugates.
    Jaiswal JK; Mattoussi H; Mauro JM; Simon SM
    Nat Biotechnol; 2003 Jan; 21(1):47-51. PubMed ID: 12459736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions.
    Prasuhn DE; Feltz A; Blanco-Canosa JB; Susumu K; Stewart MH; Mei BC; Yakovlev AV; Loukov C; Mallet JM; Oheim M; Dawson PE; Medintz IL
    ACS Nano; 2010 Sep; 4(9):5487-97. PubMed ID: 20822159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular protein target detection by quantum dots optimized for live cell imaging.
    Choi Y; Kim K; Hong S; Kim H; Kwon YJ; Song R
    Bioconjug Chem; 2011 Aug; 22(8):1576-86. PubMed ID: 21718016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots.
    Chen B; Liu Q; Zhang Y; Xu L; Fang X
    Langmuir; 2008 Oct; 24(20):11866-71. PubMed ID: 18823093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step conjugation of antibodies to quantum dots for labeling cell surface receptors in mammalian cells.
    Iyer G; Xu J; Weiss S
    Methods Mol Biol; 2011; 751():553-63. PubMed ID: 21674354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.
    Wu X; Liu H; Liu J; Haley KN; Treadway JA; Larson JP; Ge N; Peale F; Bruchez MP
    Nat Biotechnol; 2003 Jan; 21(1):41-6. PubMed ID: 12459735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells.
    Zhang MZ; Yu RN; Chen J; Ma ZY; Zhao YD
    Nanotechnology; 2012 Dec; 23(48):485104. PubMed ID: 23138109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Medintz IL
    J Am Chem Soc; 2010 May; 132(17):5975-7. PubMed ID: 20392040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.
    Anas A; Okuda T; Kawashima N; Nakayama K; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2009 Aug; 3(8):2419-29. PubMed ID: 19653641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protease-activated quantum dot probes.
    Chang E; Miller JS; Sun J; Yu WW; Colvin VL; Drezek R; West JL
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1317-21. PubMed ID: 16039606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.