BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21627332)

  • 1. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y; Klostermeier D; Rudolph MG
    Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y; Klostermeier D
    Phys Chem Chem Phys; 2011 Jun; 13(21):10009-19. PubMed ID: 21350762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A; Del Toro Duany Y; Rudolph MG; Klostermeier D
    Nucleic Acids Res; 2011 Mar; 39(5):1789-800. PubMed ID: 21051354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling.
    Rudolph MG; del Toro Duany Y; Jungblut SP; Ganguly A; Klostermeier D
    Nucleic Acids Res; 2013 Jan; 41(2):1058-70. PubMed ID: 23209025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase.
    de la Tour CB; Amrani L; Cossard R; Neuman KC; Serre MC; Duguet M
    J Biol Chem; 2008 Oct; 283(41):27395-27402. PubMed ID: 18614530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y; Jungblut SP; Schmidt AS; Klostermeier D
    Nucleic Acids Res; 2008 Oct; 36(18):5882-95. PubMed ID: 18796525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y; Ganguly A; Klostermeier D
    Biol Chem; 2014 Jan; 395(1):83-93. PubMed ID: 23959663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F; Weisslocker-Schaetzel M; Klostermeier D
    J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of full length topoisomerase I from Thermotoga maritima.
    Hansen G; Harrenga A; Wieland B; Schomburg D; Reinemer P
    J Mol Biol; 2006 May; 358(5):1328-40. PubMed ID: 16600296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G; Valenti A; D'amaro A; Rossi M; Ciaramella M
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):69-73. PubMed ID: 19143604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A; Rossi M; Ciaramella M
    Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P; Klostermeier D
    Nucleic Acids Res; 2014 Jul; 42(13):8200-13. PubMed ID: 25013168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase.
    Hsieh TS; Capp C
    J Biol Chem; 2005 May; 280(21):20467-75. PubMed ID: 15788400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA.
    Rodríguez AC; Stock D
    EMBO J; 2002 Feb; 21(3):418-26. PubMed ID: 11823434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase.
    Rodriguez AC
    J Biol Chem; 2002 Aug; 277(33):29865-73. PubMed ID: 12048189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.