BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21627332)

  • 21. Reverse gyrase from the hyperthermophilic bacterium Thermotoga maritima: properties and gene structure.
    Bouthier de la Tour C; Portemer C; Kaltoum H; Duguet M
    J Bacteriol; 1998 Jan; 180(2):274-81. PubMed ID: 9440516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
    Déclais AC; Marsault J; Confalonieri F; de La Tour CB; Duguet M
    J Biol Chem; 2000 Jun; 275(26):19498-504. PubMed ID: 10748189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct observation of helicase-topoisomerase coupling within reverse gyrase.
    Yang X; Garnier F; Débat H; Strick TR; Nadal M
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10856-10864. PubMed ID: 32371489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperthermophilic topoisomerase I from Thermotoga maritima. A very efficient enzyme that functions independently of zinc binding.
    Viard T; Lamour V; Duguet M; Bouthier de la Tour C
    J Biol Chem; 2001 Dec; 276(49):46495-503. PubMed ID: 11577108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA.
    Göttler T; Klostermeier D
    J Mol Biol; 2007 Apr; 367(5):1392-404. PubMed ID: 17320901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A; Perugino G; Valenti A; Rashid N; Rossi M; Akhtar M; Ciaramella M
    J Biol Chem; 2014 Feb; 289(6):3231-43. PubMed ID: 24347172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate.
    Hsieh TS; Plank JL
    J Biol Chem; 2006 Mar; 281(9):5640-7. PubMed ID: 16407212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine.
    Valenti A; Perugino G; D'Amaro A; Cacace A; Napoli A; Rossi M; Ciaramella M
    Nucleic Acids Res; 2008 Aug; 36(14):4587-97. PubMed ID: 18614606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeal Hel308 domain V couples DNA binding to ATP hydrolysis and positions DNA for unwinding over the helicase ratchet.
    Woodman IL; Briggs GS; Bolt EL
    J Mol Biol; 2007 Dec; 374(5):1139-44. PubMed ID: 17991488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima.
    Guipaud O; Marguet E; Noll KM; de la Tour CB; Forterre P
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10606-11. PubMed ID: 9380682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea.
    Forterre P; Bergerat A; Lopez-Garcia P
    FEMS Microbiol Rev; 1996 May; 18(2-3):237-48. PubMed ID: 8639331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluoroquinolone-dependent DNA supercoiling by Vaccinia topoisomerase I.
    Kamau E; Grove A
    J Mol Biol; 2004 Sep; 342(2):479-87. PubMed ID: 15327948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermotoga maritima-Escherichia coli chimeric topoisomerases. Answers about involvement of the carboxyl-terminal domain in DNA topoisomerase I-mediated catalysis.
    Viard T; Cossard R; Duguet M; de La Tour CB
    J Biol Chem; 2004 Jul; 279(29):30073-80. PubMed ID: 15140883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PICH and TOP3A cooperate to induce positive DNA supercoiling.
    Bizard AH; Allemand JF; Hassenkam T; Paramasivam M; Sarlós K; Singh MI; Hickson ID
    Nat Struct Mol Biol; 2019 Apr; 26(4):267-274. PubMed ID: 30936532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling.
    Kampmann M; Stock D
    Nucleic Acids Res; 2004; 32(12):3537-45. PubMed ID: 15247343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The type IA topoisomerase catalytic cycle: A normal mode analysis and molecular dynamics simulation.
    Xiong B; Burk DL; Shen J; Luo X; Liu H; Shen J; Berghuis AM
    Proteins; 2008 Jun; 71(4):1984-94. PubMed ID: 18186484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural flexibility in human topoisomerase I revealed in multiple non-isomorphous crystal structures.
    Redinbo MR; Stewart L; Champoux JJ; Hol WG
    J Mol Biol; 1999 Sep; 292(3):685-96. PubMed ID: 10497031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.