BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 2162786)

  • 1. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes.
    Samartsev VN; Khoroshavina EI; Pavlova EK; Dubinin MV; Semenova AA
    Membranes (Basel); 2023 Apr; 13(5):. PubMed ID: 37233533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT.
    Carrer A; Laquatra C; Tommasin L; Carraro M
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial H
    Bertholet AM; Kirichok Y
    Annu Rev Physiol; 2022 Feb; 84():381-407. PubMed ID: 34758268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Uncoupling Proteins (UCP1-UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4-Dinitrophenol in Mitochondria and Planar Bilayer Membranes.
    Žuna K; Jovanović O; Khailova LS; Škulj S; Brkljača Z; Kreiter J; Kotova EA; Vazdar M; Antonenko YN; Pohl EE
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative phosphorylation K
    Willis W; Willis E; Kuzmiak-Glancy S; Kras K; Hudgens J; Barakati N; Stern J; Mandarino L
    Biochim Biophys Acta Bioenerg; 2021 Aug; 1862(8):148430. PubMed ID: 33887230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of 3-hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic β-cell bioenergetics?
    Doliba NM; Liu Q; Li C; Chen J; Chen P; Liu C; Frederick DW; Baur JA; Bennett MJ; Naji A; Matschinsky FM
    Mol Metab; 2015 Dec; 4(12):926-39. PubMed ID: 26909309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts.
    Salpea KD; Maubaret CG; Kathagen A; Ken-Dror G; Gilroy DW; Humphries SE
    PLoS One; 2013; 8(9):e73756. PubMed ID: 24086293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart.
    Cole MA; Murray AJ; Cochlin LE; Heather LC; McAleese S; Knight NS; Sutton E; Jamil AA; Parassol N; Clarke K
    Basic Res Cardiol; 2011 May; 106(3):447-57. PubMed ID: 21318295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT.
    Chinopoulos C; Vajda S; Csanády L; Mándi M; Mathe K; Adam-Vizi V
    Biophys J; 2009 Mar; 96(6):2490-504. PubMed ID: 19289073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation and maladaptation of the heart in obesity.
    Harmancey R; Wilson CR; Taegtmeyer H
    Hypertension; 2008 Aug; 52(2):181-7. PubMed ID: 18574077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.
    Shabalina IG; Kramarova TV; Nedergaard J; Cannon B
    Biochem J; 2006 Nov; 399(3):405-14. PubMed ID: 16831128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition.
    Schönfeld P; Kahlert S; Reiser G
    Biochem J; 2004 Oct; 383(Pt 1):121-8. PubMed ID: 15198638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic changes induced by cold stress in rat liver mitochondria.
    Bravo C; Vargas-Suárez M; Rodríguez-Enríquez S; Loza-Tavera H; Moreno-Sánchez R
    J Bioenerg Biomembr; 2001 Aug; 33(4):289-301. PubMed ID: 11710805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative phosphorylation in myocardial mitochondria 'in situ': a calorimetric study on permeabilized cardiac muscle preparations.
    Köhnke D; Schramm M; Daut J
    Mol Cell Biochem; 1997 Sep; 174(1-2):101-13. PubMed ID: 9309673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the function of adenine nucleotide translocase in fatty acid uncoupling depend on the type of mitochondria?
    Schönfeld P
    FEBS Lett; 1990 May; 264(2):246-8. PubMed ID: 2162786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the effect of copper deficiency on rat liver mitochondria. III. Effects on adenine nucleotide translocase.
    Davies NT; Lawrence CB
    Biochim Biophys Acta; 1986 Mar; 848(3):294-304. PubMed ID: 3004576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase.
    Moreadith RW; Jacobus WE
    J Biol Chem; 1982 Jan; 257(2):899-905. PubMed ID: 6274871
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.