BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 21627960)

  • 1. Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: a study in a rat model.
    Rogalska J; Pilat-Marcinkiewicz B; Brzóska MM
    Chem Biol Interact; 2011 Sep; 193(3):191-203. PubMed ID: 21627960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Protective Effect of Zinc and Magnesium for the Hepatic and Renal Toxicity Induced by Acetaminophen and Potentiated with Ciprofloxacin in Rats.
    Ciocan Moraru A; Ciubotariu D; Ghiciuc CM; Hurmuzache ME; Lupușoru CE; Crișan-Dabija R
    Medicina (Kaunas); 2024 Apr; 60(4):. PubMed ID: 38674257
    [No Abstract]   [Full Text] [Related]  

  • 3. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation.
    Zhang H; Yan J; Xie D; Zhu X; Nie G; Zhang H; Li X
    J Hazard Mater; 2024 Aug; 475():134855. PubMed ID: 38880044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histopathology and cytotoxicity as biomarkers in treated rats with cadmium and some therapeutic agents.
    El-Refaiy AI; Eissa FI
    Saudi J Biol Sci; 2013 Jul; 20(3):265-80. PubMed ID: 23961244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn(II)-curcumin prevents cadmium-aggravated diabetic nephropathy by regulating gut microbiota and zinc homeostasis.
    Sun W; Mei X; Wang J; Mai Z; Xu D
    Front Pharmacol; 2024; 15():1411230. PubMed ID: 38903987
    [No Abstract]   [Full Text] [Related]  

  • 6. Zinc-associated phospholipid metabolic alterations and their impacts on ALT levels in workers.
    Wang Y; Li Y; Nong Q; Zhang G; Liu N; Guo H; He Q; Liu L; Qu G; He B; Hu L; Jiang G
    Sci Total Environ; 2024 Jul; 933():173152. PubMed ID: 38735327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Autophagy in Cadmium-Induced Hepatotoxicity and Liver Diseases.
    Niture S; Lin M; Qi Q; Moore JT; Levine KE; Fernando RA; Kumar D
    J Toxicol; 2021; 2021():9564297. PubMed ID: 34422041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Endogenous Essential Metal Homeostasis in the Liver and Kidneys during a Six-Month Follow-Up Period after Subchronic Cadmium Exposure.
    Kusak R; Nasiadek M; Stragierowicz J; Hanke W; Kilanowicz A
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Knowledge on Metal Trace Element Concentrations and Metallothionein Biomarkers in Cetaceans.
    Leignel V; Pillot L; Gerpe MS; Caurant F
    Toxics; 2023 May; 11(5):. PubMed ID: 37235268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Assessment of Metallothionein-Cadmium Binding in Rat Uterus after Subchronic Exposure Using a Long-Term Observation Model.
    Nasiadek M; Stragierowicz J; Kilanowicz A
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Beneficial Impact of Zinc Supplementation on the Vascular Tissue of the Abdominal Aorta under Repeated Intoxication with Cadmium: A Study in an In Vivo Experimental Model.
    Brzóska MM; Kozłowska M; Rogalska J
    Nutrients; 2022 Sep; 14(19):. PubMed ID: 36235732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of albumin to creatinine ratio with urinary arsenic and metal exposure: evidence from NHANES 2015-2016.
    Rahman HH; Niemann D; Munson-McGee SH
    Int Urol Nephrol; 2022 Jun; 54(6):1343-1353. PubMed ID: 34643861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Zinc Intake Protects against Oxidative Stress and Its Consequences in the Brain: A Study in an In Vivo Rat Model of Cadmium Exposure.
    Brzóska MM; Kozłowska M; Rogalska J; Gałażyn-Sidorczuk M; Roszczenko A; Smereczański NM
    Nutrients; 2021 Jan; 13(2):. PubMed ID: 33572579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between Urinary Cadmium to Zinc Intake Ratio with Adult Mortality in a Follow-Up Study of NHANES 1988-1994 and 1999-2004.
    Kim K; Melough MM; Sakaki JR; Ha K; Marmash D; Noh H; Chun OK
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31878194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extract from
    Mężyńska M; Brzóska MM; Rogalska J; Piłat-Marcinkiewicz B
    Nutrients; 2018 Dec; 11(1):. PubMed ID: 30577648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effect of Increased Zinc Supply against Oxidative Damage of Sublingual Gland in Chronic Exposure to Cadmium: Experimental Study on Rats.
    Kostecka-Sochoń P; Onopiuk BM; Dąbrowska E
    Oxid Med Cell Longev; 2018; 2018():3732842. PubMed ID: 30116477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and expression analyses of somatolactin-α and -β genes in rare minnows (Gobiocypris rarus) following waterborne cadmium exposure.
    Liu XH; Xie BW; Wang ZJ; Zhang YG
    Fish Physiol Biochem; 2018 Jun; 44(3):983-995. PubMed ID: 29550894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of an Extract from Aronia melanocarpa L. Berries on the Body Status of Zinc and Copper under Chronic Exposure to Cadmium: An In Vivo Experimental Study.
    Borowska S; Brzóska MM; Gałażyn-Sidorczuk M; Rogalska J
    Nutrients; 2017 Dec; 9(12):. PubMed ID: 29257101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of cadmium-induced lung injury by Nigella sativa oil.
    El-Ebiary AA; El-Ghaiesh S; Hantash E; Alomar S
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25356-25363. PubMed ID: 27696167
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.