BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21628167)

  • 1. Cytotype variation and allopolyploidy in North American species of the Sphagnum subsecundum complex (Sphagnaceae).
    Ricca M; Beecher FW; Boles SB; Temsch E; Greilhuber J; Karlin EF; Shaw AJ
    Am J Bot; 2008 Dec; 95(12):1606-20. PubMed ID: 21628167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic structure and genealogy in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta).
    Shaw AJ; Pokorny L; Shaw B; Ricca M; Boles S; Szövényi P
    Mol Phylogenet Evol; 2008 Oct; 49(1):304-17. PubMed ID: 18634892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex.
    Ricca M; Szövényi P; Temsch EM; Johnson MG; Shaw AJ
    Mol Ecol; 2011 Aug; 20(15):3202-18. PubMed ID: 21722226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum.
    Karlin EF; Boles SB; Ricca M; Temsch EM; Greilhuber J; Shaw AJ
    Mol Ecol; 2009 Apr; 18(7):1439-54. PubMed ID: 19368647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phylogenetic delimitation of the "Sphagnum subsecundum complex" (Sphagnaceae, Bryophyta).
    Shaw AJ; Boles S; Shaw B
    Am J Bot; 2008 Jun; 95(6):731-44. PubMed ID: 21632399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins, genetic structure, and systematics of the narrow endemic peatmosses (Sphagnum): S. guwassanense and S. triseriporum (Sphagnaceae).
    Shaw AJ; Shaw B; Johnson MG; Higuchi M; Arikawa T; Ueno T; Devos N
    Am J Bot; 2013 Jun; 100(6):1202-20. PubMed ID: 23720430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One haploid parent contributes 100% of the gene pool for a widespread species in northwest North America.
    Karlin EF; Andrus RE; Boles SB; Shaw AJ
    Mol Ecol; 2011 Feb; 20(4):753-67. PubMed ID: 21199037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Genetic Structure of the Abundant and Widespread Peatmoss Sphagnum magellanicum Brid.
    Kyrkjeeide MO; Hassel K; Flatberg KI; Shaw AJ; Yousefi N; Stenøien HK
    PLoS One; 2016; 11(2):e0148447. PubMed ID: 26859563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between founder effect and selection during biological invasion in an aquatic plant.
    Kliber A; Eckert CG
    Evolution; 2005 Sep; 59(9):1900-13. PubMed ID: 16261728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mating system and gene flow in the red seaweed Gracilaria gracilis: effect of haploid-diploid life history and intertidal rocky shore landscape on fine-scale genetic structure.
    Engel CR; Destombe C; Valero M
    Heredity (Edinb); 2004 Apr; 92(4):289-98. PubMed ID: 14679395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae).
    Husband BC; Schemske DW
    Am J Bot; 1998 Dec; 85(12):1688-94. PubMed ID: 21719413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest.
    Lo EY; Stefanović S; Dickinson TA
    Mol Ecol; 2009 Mar; 18(6):1145-60. PubMed ID: 19243504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae).
    Halverson K; Heard SB; Nason JD; Stireman JO
    Am J Bot; 2008 Jan; 95(1):50-8. PubMed ID: 21632314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)--niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia.
    Jakob SS; Ihlow A; Blattner FR
    Mol Ecol; 2007 Apr; 16(8):1713-27. PubMed ID: 17402985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae).
    Baack EJ
    Am J Bot; 2004 Nov; 91(11):1783-8. PubMed ID: 21652325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allopolyploid origin and population genetics of the rare orchid Spiranthes diluvialis.
    Arft A; Ranker T
    Am J Bot; 1998 Jan; 85(1):110. PubMed ID: 21684885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae).
    Suda J; Weiss-Schneeweiss H; Tribsch A; Schneeweiss GM; Trávnícek P; Schönswetter P
    Am J Bot; 2007 Aug; 94(8):1391-401. PubMed ID: 21636507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyploid evolution and biogeography in Chelone (Scrophulariaceae): morphological and isozyme evidence.
    Nelson AD; Elisens WJ
    Am J Bot; 1999 Oct; 86(10):1487-501. PubMed ID: 10523288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsatellite analysis of genetic variation and population genetic differentiation in autotetraploid and diploid rice.
    Luan L; Wang X; Long WB; Liu YH; Tu SB; Zhao ZP; Kong FL; Yu MQ
    Biochem Genet; 2008 Jun; 46(5-6):248-66. PubMed ID: 18253825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.