These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21628228)

  • 1. Morphological and genetic variations of Potentilla matsumurae (Rosaceae) between fellfield and snowbed populations.
    Shimono Y; Watanabe M; Hirao AS; Wada N; Kudo G
    Am J Bot; 2009 Apr; 96(4):728-37. PubMed ID: 21628228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotypic divergences of the alpine herb Potentilla matsumurae adapted to fellfield-snowbed habitats across a series of mountain sky islands.
    Hirao AS; Shimono Y; Narita K; Wada N; Kudo G
    Am J Bot; 2019 Jun; 106(6):772-787. PubMed ID: 31124143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspecific variations in seedling emergence and survival of Potentilla matsumurae (Rosaceae) between alpine fellfield and snowbed habitats.
    Shimono Y; Kudo G
    Ann Bot; 2003 Jan; 91(1):21-9. PubMed ID: 12495916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape genetics of alpine-snowbed plants: comparisons along geographic and snowmelt gradients.
    Hirao AS; Kudo G
    Heredity (Edinb); 2004 Sep; 93(3):290-8. PubMed ID: 15241452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraspecific Functional Trait Response to Advanced Snowmelt Suggests Increase of Growth Potential but Decrease of Seed Production in Snowbed Plant Species.
    Tonin R; Gerdol R; Tomaselli M; Petraglia A; Carbognani M; Wellstein C
    Front Plant Sci; 2019; 10():289. PubMed ID: 30923530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refugia of Potentilla matsumurae (Rosaceae) located at high mountains in the Japanese archipelago.
    Ikeda H; Senni K; Fujii N; Setoguchi H
    Mol Ecol; 2006 Oct; 15(12):3731-40. PubMed ID: 17032270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in bumble bee preference and pollen limitation among neighboring populations: comparisons between Phyllodoce caerulea and Phyllodoce aleutica (Ericaceae) along snowmelt gradients.
    Kasagi T; Kudo G
    Am J Bot; 2003 Sep; 90(9):1321-7. PubMed ID: 21659231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsatellite analysis of the phylogeography, Pleistocene history and secondary contact hypotheses for the killifish, Fundulus heteroclitus.
    Adams SM; Lindmeier JB; Duvernell DD
    Mol Ecol; 2006 Apr; 15(4):1109-23. PubMed ID: 16599970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid zone dominated by fertile F1s of two alpine shrub species, Phyllodoce caerulea and Phyllodoce aleutica, along a snowmelt gradient.
    Kameyama Y; Kasagi T; Kudo G
    J Evol Biol; 2008 Mar; 21(2):588-97. PubMed ID: 18205785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allozyme and morphological variation in two subspecies of Dryas octopetala (Rosaceae)in Alaska.
    Max KN; Mouchaty SK; Schwaegerle KE
    Am J Bot; 1999 Nov; 86(11):1637-44. PubMed ID: 10562254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season.
    Baptist F; Flahaut C; Streb P; Choler P
    Plant Biol (Stuttg); 2010 Sep; 12(5):755-64. PubMed ID: 20701698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental ecology of Dryas octopetala ecotypes : IV. Fitness response to reciprocal transplanting in ecotypes with differing plasticity.
    McGraw JB
    Oecologia; 1987 Sep; 73(3):465-468. PubMed ID: 28311531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem.
    Block W; Lewis Smith RI; Kennedy AD
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):449-84. PubMed ID: 19659886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of segregation of flowering time on fine-scale spatial genetic structure in an alpine-snowbed herb Primula cuneifolia.
    Hirao AS; Kudo G
    Heredity (Edinb); 2008 Apr; 100(4):424-30. PubMed ID: 18270534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. POPULATION STRUCTURE ALONG A STEEP ENVIRONMENTAL GRADIENT: CONSEQUENCES OF FLOWERING TIME AND HABITAT VARIATION IN THE SNOW BUTTERCUP, RANUNCULUS ADONEUS.
    Stanton ML; Galen C; Shore J
    Evolution; 1997 Feb; 51(1):79-94. PubMed ID: 28568788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus.
    Santon ML; Galen C
    Am Nat; 1997 Aug; 150(2):143-78. PubMed ID: 18811280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and phenotypic variation among geographically isolated populations of the globally threatened Dupont's lark Chersophilus duponti.
    García JT; Suárez F; Garza V; Calero-Riestra M; Hernández J; Pérez-Tris J
    Mol Phylogenet Evol; 2008 Jan; 46(1):237-51. PubMed ID: 17719801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae).
    Collin H; Fumagalli L
    Mol Ecol; 2011 Nov; 20(21):4490-502. PubMed ID: 21951706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change affects the outcome of competitive interactions-an application of principal response curves.
    Heegaard E; Vandvik V
    Oecologia; 2004 May; 139(3):459-66. PubMed ID: 15021981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glacial survival and local adaptation in an alpine leaf beetle.
    Margraf N; Verdon A; Rahier M; Naisbit RE
    Mol Ecol; 2007 Jun; 16(11):2333-43. PubMed ID: 17561894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.