BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21628548)

  • 21. The Circadian Clock Is Sustained in the Thyroid Gland of VIP Receptor 2 Deficient Mice.
    Georg B; Fahrenkrug J; Jørgensen HL; Hannibal J
    Front Endocrinol (Lausanne); 2021; 12():737581. PubMed ID: 34539582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian Control of the Female Reproductive Axis Through Gated Responsiveness of the RFRP-3 System to VIP Signaling.
    Russo KA; La JL; Stephens SB; Poling MC; Padgaonkar NA; Jennings KJ; Piekarski DJ; Kauffman AS; Kriegsfeld LJ
    Endocrinology; 2015 Jul; 156(7):2608-18. PubMed ID: 25872006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus.
    Hastings MH; Brancaccio M; Maywood ES
    J Neuroendocrinol; 2014 Jan; 26(1):2-10. PubMed ID: 24329967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
    Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED
    J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling.
    Hamnett R; Crosby P; Chesham JE; Hastings MH
    Nat Commun; 2019 Feb; 10(1):542. PubMed ID: 30710088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus.
    Mazuski C; Chen SP; Herzog ED
    J Biol Rhythms; 2020 Oct; 35(5):465-475. PubMed ID: 32536240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporal expression pattern of PERIOD 1 and PERIOD 2 in the mouse SCN is dependent on VIP receptor 2 signaling.
    Hannibal J; Norn THB; Georg B; Fahrenkrug J
    Eur J Neurosci; 2019 Oct; 50(7):3115-3132. PubMed ID: 31211910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus.
    Hermes ML; Kolaj M; Doroshenko P; Coderre E; Renaud LP
    J Neurophysiol; 2009 Sep; 102(3):1834-42. PubMed ID: 19571188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors.
    Fan J; Zeng H; Olson DP; Huber KM; Gibson JR; Takahashi JS
    J Neurosci; 2015 Feb; 35(5):1905-20. PubMed ID: 25653351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro.
    Reed HE; Meyer-Spasche A; Cutler DJ; Coen CW; Piggins HD
    Eur J Neurosci; 2001 Feb; 13(4):839-43. PubMed ID: 11207820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of vasoactive intestinal polypeptide on neurones of the rat suprachiasmatic nuclei in vitro.
    Reed HE; Cutler DJ; Brown TM; Brown J; Coen CW; Piggins HD
    J Neuroendocrinol; 2002 Aug; 14(8):639-46. PubMed ID: 12153466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington's disease mouse.
    Fahrenkrug J; Popovic N; Georg B; Brundin P; Hannibal J
    J Mol Neurosci; 2007; 31(2):139-48. PubMed ID: 17478887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus.
    Brancaccio M; Maywood ES; Chesham JE; Loudon AS; Hastings MH
    Neuron; 2013 May; 78(4):714-28. PubMed ID: 23623697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.
    Kent J; Meredith AL
    PLoS One; 2008; 3(12):e3884. PubMed ID: 19060951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex-specific differences in the circadian pattern of action potential firing by rat suprachiasmatic nucleus vasopressin neurons.
    Thirouin ZS; Gizowski C; Murtaz A; Bourque CW
    J Neuroendocrinol; 2023 Sep; 35(9):e13273. PubMed ID: 37132408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice.
    Brown TM; Colwell CS; Waschek JA; Piggins HD
    J Neurophysiol; 2007 Mar; 97(3):2553-8. PubMed ID: 17151217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.
    Patton AP; Chesham JE; Hastings MH
    J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling.
    Bechtold DA; Brown TM; Luckman SM; Piggins HD
    Am J Physiol Regul Integr Comp Physiol; 2008 Feb; 294(2):R344-51. PubMed ID: 18032467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus.
    Kudo T; Block GD; Colwell CS
    ASN Neuro; 2015; 7(6):. PubMed ID: 26553726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.
    Smyllie NJ; Chesham JE; Hamnett R; Maywood ES; Hastings MH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3657-62. PubMed ID: 26966234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.