BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21628559)

  • 1. Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes.
    Isoe J; Collins J; Badgandi H; Day WA; Miesfeld RL
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):E211-7. PubMed ID: 21628559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COPI-mediated blood meal digestion in vector mosquitoes is independent of midgut ARF-GEF and ARF-GAP regulatory activities.
    Isoe J; Stover W; Miesfeld RB; Miesfeld RL
    Insect Biochem Mol Biol; 2013 Aug; 43(8):732-9. PubMed ID: 23727611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-COPI coatomer protein is required for rough endoplasmic reticulum whorl formation in mosquito midgut epithelial cells.
    Zhou G; Isoe J; Day WA; Miesfeld RL
    PLoS One; 2011 Mar; 6(3):e18150. PubMed ID: 21483820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti.
    Bryant B; Macdonald W; Raikhel AS
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti.
    Alabaster A; Isoe J; Zhou G; Lee A; Murphy A; Day WA; Miesfeld RL
    Insect Biochem Mol Biol; 2011 Dec; 41(12):946-55. PubMed ID: 21971482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hazara Nairovirus Requires COPI Components in both Arf1-Dependent and Arf1-Independent Stages of Its Replication Cycle.
    Fuller J; Álvarez-Rodríguez B; Todd EJAA; Mankouri J; Hewson R; Barr JN
    J Virol; 2020 Aug; 94(17):. PubMed ID: 32581103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal.
    Price DP; Nagarajan V; Churbanov A; Houde P; Milligan B; Drake LL; Gustafson JE; Hansen IA
    PLoS One; 2011; 6(7):e22573. PubMed ID: 21818341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles.
    Bryant B; Raikhel AS
    PLoS One; 2011; 6(11):e25502. PubMed ID: 22125592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of manipulating apoptosis on Sindbis virus infection of Aedes aegypti mosquitoes.
    Wang H; Gort T; Boyle DL; Clem RJ
    J Virol; 2012 Jun; 86(12):6546-54. PubMed ID: 22438551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.
    Mazzalupo S; Isoe J; Belloni V; Scaraffia PY
    FASEB J; 2016 Jan; 30(1):111-20. PubMed ID: 26310269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea synthesis and excretion in Aedes aegypti mosquitoes are regulated by a unique cross-talk mechanism.
    Isoe J; Scaraffia PY
    PLoS One; 2013; 8(6):e65393. PubMed ID: 23755226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Functions of the COPI Complex in Higher Plants.
    Ahn HK; Kang YW; Lim HM; Hwang I; Pai HS
    Mol Cells; 2015 Oct; 38(10):866-75. PubMed ID: 26434491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E93 confers steroid hormone responsiveness of digestive enzymes to promote blood meal digestion in the midgut of the mosquito Aedes aegypti.
    He YZ; Ding Y; Wang X; Zou Z; Raikhel AS
    Insect Biochem Mol Biol; 2021 Jul; 134():103580. PubMed ID: 33901693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes.
    Isoe J; Rascón AA; Kunz S; Miesfeld RL
    Insect Biochem Mol Biol; 2009 Dec; 39(12):903-12. PubMed ID: 19883761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut.
    Zhao B; Lucas KJ; Saha TT; Ha J; Ling L; Kokoza VA; Roy S; Raikhel AS
    PLoS Genet; 2017 Aug; 13(8):e1006943. PubMed ID: 28787446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti.
    Piermarini PM; Weihrauch D; Meyer H; Huss M; Beyenbach KW
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F730-50. PubMed ID: 19193723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGS4 and RGS2 bind coatomer and inhibit COPI association with Golgi membranes and intracellular transport.
    Sullivan BM; Harrison-Lavoie KJ; Marshansky V; Lin HY; Kehrl JH; Ausiello DA; Brown D; Druey KM
    Mol Biol Cell; 2000 Sep; 11(9):3155-68. PubMed ID: 10982407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear receptors in the mosquito Aedes aegypti: annotation, hormonal regulation and expression profiling.
    Cruz J; Sieglaff DH; Arensburger P; Atkinson PW; Raikhel AS
    FEBS J; 2009 Mar; 276(5):1233-54. PubMed ID: 19183228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR.
    Trujillo-Ocampo A; Cázares-Raga FE; Celestino-Montes A; Cortés-Martínez L; Rodríguez MH; Hernández-Hernández FC
    Arch Insect Biochem Physiol; 2016 Nov; 93(3):143-159. PubMed ID: 27592842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined analysis of the proteome and metabolome provides insight into microRNA-1174 function in Aedes aegypti mosquitoes.
    Luo Y; Liu D; Wang Y; Zhang F; Xu Y; Pu Q; Zhao L; Wei T; Fan T; Lou Y; Liu S
    Parasit Vectors; 2023 Aug; 16(1):271. PubMed ID: 37559132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.