BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21628580)

  • 21. Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data.
    Wang L; Li C; Dong J; Quan Q; Liu J
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44973-44986. PubMed ID: 33855665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: a laboratory microcosm study.
    Mwagona PC; Yao Y; Yuanqi S; Yu H
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33702-33714. PubMed ID: 31595410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Widespread production of nonmicrobial greenhouse gases in soils.
    Wang B; Lerdau M; He Y
    Glob Chang Biol; 2017 Nov; 23(11):4472-4482. PubMed ID: 28585372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.
    Gomez J; Vidon P; Gross J; Beier C; Caputo J; Mitchell M
    Environ Monit Assess; 2016 May; 188(5):295. PubMed ID: 27085717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microorganisms and climate change: terrestrial feedbacks and mitigation options.
    Singh BK; Bardgett RD; Smith P; Reay DS
    Nat Rev Microbiol; 2010 Nov; 8(11):779-90. PubMed ID: 20948551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change.
    Laughner JL; Neu JL; Schimel D; Wennberg PO; Barsanti K; Bowman KW; Chatterjee A; Croes BE; Fitzmaurice HL; Henze DK; Kim J; Kort EA; Liu Z; Miyazaki K; Turner AJ; Anenberg S; Avise J; Cao H; Crisp D; de Gouw J; Eldering A; Fyfe JC; Goldberg DL; Gurney KR; Hasheminassab S; Hopkins F; Ivey CE; Jones DBA; Liu J; Lovenduski NS; Martin RV; McKinley GA; Ott L; Poulter B; Ru M; Sander SP; Swart N; Yung YL; Zeng ZC
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34753820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term climate change and the geochemical cycle of carbon.
    Marshall HG; Walker JC; Kuhn WR
    J Geophys Res; 1988 Jan; 93(D1):791-801. PubMed ID: 11539746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding recent climate change.
    Serreze MC
    Conserv Biol; 2010 Feb; 24(1):10-7. PubMed ID: 20121837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible methane-induced polar warming in the early Eocene.
    Sloan LC; Walker JC; Moore TC; Rea DK; Zachos JC
    Nature; 1992 May; 357(6376):320-2. PubMed ID: 11536496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The proportionality of global warming to cumulative carbon emissions.
    Matthews HD; Gillett NP; Stott PA; Zickfeld K
    Nature; 2009 Jun; 459(7248):829-32. PubMed ID: 19516338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydropower dams can help mitigate the global warming impact of wetlands.
    Muller M
    Nature; 2019 Feb; 566(7744):315-317. PubMed ID: 30783293
    [No Abstract]   [Full Text] [Related]  

  • 32. Spatial and temporal variations of the greenhouse gas emissions in coastal saline wetlands in southeastern China.
    Cao L; Zhou Z; Xu X; Shi F
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):1118-1130. PubMed ID: 31820246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland.
    Whitfield CJ; Aherne J; Baulch HM
    Sci Total Environ; 2011 Dec; 410-411():217-25. PubMed ID: 22018963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. No climate paradox under the faint early Sun.
    Rosing MT; Bird DK; Sleep NH; Bjerrum CJ
    Nature; 2010 Apr; 464(7289):744-7. PubMed ID: 20360739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years.
    Joos F; Spahni R
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1425-30. PubMed ID: 18252830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allowable carbon emissions lowered by multiple climate targets.
    Steinacher M; Joos F; Stocker TF
    Nature; 2013 Jul; 499(7457):197-201. PubMed ID: 23823728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Standards development of global warming gas species: methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane.
    Rhoderick GC; Dorko WD
    Environ Sci Technol; 2004 May; 38(9):2685-92. PubMed ID: 15180066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.
    Huttunen JT; Alm J; Liikanen A; Juutinen S; Larmola T; Hammar T; Silvola J; Martikainen PJ
    Chemosphere; 2003 Jul; 52(3):609-21. PubMed ID: 12738299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiative forcing due to anthropogenic greenhouse gas emissions from Finland: methods for estimating forcing of a country or an activity.
    Monni S; Korhonen R; Savolainen I
    Environ Manage; 2003 Mar; 31(3):401-11. PubMed ID: 12592455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.