BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21628582)

  • 1. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires.
    van Vugt LK; Piccione B; Cho CH; Nukala P; Agarwal R
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10050-5. PubMed ID: 21628582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities.
    Jiang Z; Ren A; Yan Y; Yao J; Zhao YS
    Adv Mater; 2022 Jan; 34(4):e2106095. PubMed ID: 34881466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
    Wang J; Su R; Xing J; Bao D; Diederichs C; Liu S; Liew TCH; Chen Z; Xiong Q
    ACS Nano; 2018 Aug; 12(8):8382-8389. PubMed ID: 30089200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities.
    van Vugt LK; Piccione B; Cho CH; Aspetti C; Wirshba AD; Agarwal R
    J Phys Chem A; 2011 Apr; 115(16):3827-33. PubMed ID: 21214218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires.
    Dai G; Zou B; Wang Z
    J Am Chem Soc; 2010 Sep; 132(35):12174-5. PubMed ID: 20715829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
    Vasudev P; Jiang JH; John S
    Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers.
    Jiang JH; John S
    Sci Rep; 2014 Dec; 4():7432. PubMed ID: 25503586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical active switching in individual semiconductor nanowires.
    Piccione B; Cho CH; van Vugt LK; Agarwal R
    Nat Nanotechnol; 2012 Oct; 7(10):640-5. PubMed ID: 22941404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons.
    Cho CH; Aspetti CO; Turk ME; Kikkawa JM; Nam SW; Agarwal R
    Nat Mater; 2011 Jul; 10(9):669-75. PubMed ID: 21765398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide.
    Liu X; Bao W; Li Q; Ropp C; Wang Y; Zhang X
    Phys Rev Lett; 2017 Jul; 119(2):027403. PubMed ID: 28753353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature current injection polariton light emitting diode with a hybrid microcavity.
    Lu TC; Chen JR; Lin SC; Huang SW; Wang SC; Yamamoto Y
    Nano Lett; 2011 Jul; 11(7):2791-5. PubMed ID: 21675759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires.
    Piccione B; Aspetti CO; Cho CH; Agarwal R
    Rep Prog Phys; 2014 Aug; 77(8):086401. PubMed ID: 25093385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polariton lasing vs. photon lasing in a semiconductor microcavity.
    Deng H; Weihs G; Snoke D; Bloch J; Yamamoto Y
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15318-23. PubMed ID: 14673089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors.
    Pandya R; Chen RYS; Gu Q; Sung J; Schnedermann C; Ojambati OS; Chikkaraddy R; Gorman J; Jacucci G; Onelli OD; Willhammar T; Johnstone DN; Collins SM; Midgley PA; Auras F; Baikie T; Jayaprakash R; Mathevet F; Soucek R; Du M; Alvertis AM; Ashoka A; Vignolini S; Lidzey DG; Baumberg JJ; Friend RH; Barisien T; Legrand L; Chin AW; Yuen-Zhou J; Saikin SK; Kukura P; Musser AJ; Rao A
    Nat Commun; 2021 Nov; 12(1):6519. PubMed ID: 34764252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
    Wall F; Mey O; Schneider LM; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8303. PubMed ID: 32427933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
    Keeling J; Kéna-Cohen S
    Annu Rev Phys Chem; 2020 Apr; 71():435-459. PubMed ID: 32126177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals.
    Gómez DE; Vernon KC; Mulvaney P; Davis TJ
    Nano Lett; 2010 Jan; 10(1):274-8. PubMed ID: 20000744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.