These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21628772)

  • 1. Simultaneous recording of rat auditory cortex and thalamus via a titanium-based, microfabricated, microelectrode device.
    McCarthy PT; Rao MP; Otto KJ
    J Neural Eng; 2011 Aug; 8(4):046007. PubMed ID: 21628772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining.
    McCarthy PT; Otto KJ; Rao MP
    Biomed Microdevices; 2011 Jun; 13(3):503-15. PubMed ID: 21360044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanium-based multi-channel, micro-electrode array for recording neural signals.
    McCarthy PT; Madangopal R; Otto KJ; Rao MP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2062-5. PubMed ID: 19964778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat.
    Shiramatsu TI; Takahashi K; Noda T; Kanzaki R; Nakahara H; Takahashi H
    Neuroscience; 2016 Sep; 332():38-52. PubMed ID: 27329334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig.
    He J; Yu YQ; Xiong Y; Hashikawa T; Chan YS
    J Neurophysiol; 2002 Aug; 88(2):1040-50. PubMed ID: 12163552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.
    Escabí MA; Read HL; Viventi J; Kim DH; Higgins NC; Storace DA; Liu AS; Gifford AM; Burke JF; Campisi M; Kim YS; Avrin AE; Spiegel Jan Vd; Huang Y; Li M; Wu J; Rogers JA; Litt B; Cohen YE
    J Neurophysiol; 2014 Sep; 112(6):1566-83. PubMed ID: 24920021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticofugal modulation of the information processing in the auditory thalamus of the cat.
    Villa AE; Rouiller EM; Simm GM; Zurita P; de Ribaupierre Y; de Ribaupierre F
    Exp Brain Res; 1991; 86(3):506-17. PubMed ID: 1761088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation.
    Villa AE; Tetko IV; Dutoit P; De Ribaupierre Y; De Ribaupierre F
    J Neurosci Methods; 1999 Jan; 86(2):161-78. PubMed ID: 10065984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible thalamic component of the auditory evoked potential in the rat.
    Shaw NA
    Brain Res Bull; 1991 Jul; 27(1):133-6. PubMed ID: 1933427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological correspondence dictates cortical long-term potentiation and depression by thalamic induction.
    Liu X; Wang C; Pan C; Yan J
    Cereb Cortex; 2015 Feb; 25(2):545-53. PubMed ID: 24046076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium-based biodegradable microelectrodes for neural recording.
    Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recordings, behaviour and models related to corticothalamic feedback.
    Gerstein GL; Kirkland KL; Musial PG; Talwar SK
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1835-41. PubMed ID: 12626016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysensory evoked potentials in rat parietotemporal cortex: combined auditory and somatosensory responses.
    Di S; Brett B; Barth DS
    Brain Res; 1994 Apr; 642(1-2):267-80. PubMed ID: 8032888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex.
    Williams JC; Rennaker RL; Kipke DR
    Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population activity in auditory cortex of the awake rat revealed by recording with dense microelectrode array.
    Noda T; Kanzaki R; Takahashi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1538-41. PubMed ID: 24109993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.