These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2162888)

  • 21. Activation of PAF receptor by oxidised LDL in human monocytes stimulates chemokine releases but not urokinase-type plasminogen activator expression.
    Beaudeux JL; Said T; Ninio E; Ganné F; Soria J; Delattre J; Soria C; Legrand A; Peynet J
    Clin Chim Acta; 2004 Jun; 344(1-2):163-71. PubMed ID: 15149885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of 15-lipoxygenase by low density lipoprotein in vascular endothelial cells. Relationship to the oxidative modification of low density lipoprotein.
    Derian CK; Lewis DF
    Prostaglandins Leukot Essent Fatty Acids; 1992 Jan; 45(1):49-57. PubMed ID: 1546066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.
    Jessup W; Darley-Usmar V; O'Leary V; Bedwell S
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):163-9. PubMed ID: 1883327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein kinase calpha regulates human monocyte O-2 production and low density lipoprotein lipid oxidation.
    Li Q; Subbulakshmi V; Fields AP; Murray NR; Cathcart MK
    J Biol Chem; 1999 Feb; 274(6):3764-71. PubMed ID: 9920929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytokine modulation of LDL oxidation by activated human monocytes.
    Folcik VA; Aamir R; Cathcart MK
    Arterioscler Thromb Vasc Biol; 1997 Oct; 17(10):1954-61. PubMed ID: 9351359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages.
    Rankin SM; Parthasarathy S; Steinberg D
    J Lipid Res; 1991 Mar; 32(3):449-56. PubMed ID: 1906087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of dacron-activated monocytic cell oxidation of low density lipoprotein.
    van Aalst JA; Pitsch RJ; Absood A; Fox PL; Graham LM
    J Vasc Surg; 2000 Jan; 31(1 Pt 1):171-80. PubMed ID: 10642720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein kinase C activity is required for lipid oxidation of low density lipoprotein by activated human monocytes.
    Li Q; Cathcart MK
    J Biol Chem; 1994 Jul; 269(26):17508-15. PubMed ID: 8021258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
    Heinecke JW; Kawamura M; Suzuki L; Chait A
    J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Paradoxical increase in LDL oxidation by endothelial cells from an atherosclerosis-resistant mouse strain.
    Miyoshi T; Matsumoto AH; Shi W
    Atherosclerosis; 2007 Jun; 192(2):259-65. PubMed ID: 16919636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins.
    Kälvegren H; Bylin H; Leanderson P; Richter A; Grenegård M; Bengtsson T
    Thromb Haemost; 2005 Aug; 94(2):327-35. PubMed ID: 16113822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein.
    Aviram M; Rosenblat M; Etzioni A; Levy R
    Metabolism; 1996 Sep; 45(9):1069-79. PubMed ID: 8781293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha-tocopherol supplementation of macrophages does not influence their ability to oxidize LDL.
    Baoutina A; Dean RT; Jessup W
    J Lipid Res; 1998 Jan; 39(1):114-30. PubMed ID: 9469591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW; Baker L; Rosen H; Chait A
    J Clin Invest; 1986 Mar; 77(3):757-61. PubMed ID: 3005364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
    Kawamura M; Heinecke JW; Chait A
    J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipoprotein receptor interactions are not required for monocyte oxidation of LDL.
    Cathcart MK; Li Q; Chisolm GM
    J Lipid Res; 1995 Sep; 36(9):1857-65. PubMed ID: 8558074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LDL receptor-dependent polyunsaturated fatty acid transport and metabolism.
    Habenicht AJ; Salbach P; Janssen-Timmen U
    Eicosanoids; 1992; 5 Suppl():S29-31. PubMed ID: 1449825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation.
    Li Q; Cathcart MK
    J Biol Chem; 1997 Jan; 272(4):2404-11. PubMed ID: 8999952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation.
    Lesnik P; Dentan C; Vonica A; Moreau M; Chapman MJ
    Arterioscler Thromb Vasc Biol; 1995 Aug; 15(8):1121-30. PubMed ID: 7627705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced capacity of n-3 fatty acid-enriched macrophages to oxidize low density lipoprotein mechanisms and effects of antioxidant vitamins.
    Suzukawa M; Abbey M; Clifton P; Nestel PJ
    Atherosclerosis; 1996 Aug; 124(2):157-69. PubMed ID: 8830929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.