These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21628987)

  • 21. Speciation of methyltins by dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry.
    Smitiene V; Semasko I; Vickackaite V
    J Sep Sci; 2014 Aug; 37(15):1989-95. PubMed ID: 24824745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dummy-surface molecularly imprinted polymers as a sorbent of micro-solid-phase extraction combined with dispersive liquid-liquid microextraction for determination of five 2-phenylpropionic acid NSAIDs in aquatic environmental samples.
    Guo P; Yuan X; Zhang J; Wang B; Sun X; Chen X; Zhao L
    Anal Bioanal Chem; 2018 Jan; 410(2):373-389. PubMed ID: 29124305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trace determination of dichlorvos in environmental samples by room temperature ionic liquid-based dispersive liquid-phase microextraction combined with HPLC.
    Wang S; Xiang B; Tang Q
    J Chromatogr Sci; 2012 Sep; 50(8):702-8. PubMed ID: 22618021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples.
    Rajabi M; Kamalabadi M; Jamali MR; Zolgharnein J; Asanjarani N
    Hum Exp Toxicol; 2013 Jun; 32(6):620-31. PubMed ID: 22893353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-density extraction solvent based solvent-terminated dispersive liquid-liquid microextraction for quantitative determination of ionizable pesticides in environmental waters.
    Tolcha T; Merdassa Y; Megersa N
    J Sep Sci; 2013 Mar; 36(6):1119-27. PubMed ID: 23457115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of dispersive liquid-liquid microextraction for the simultaneous extraction, preconcentration, and derivatization of Hg2+ and CH3Hg+ for further determination by GC-MS.
    Soares BM; Pereira ER; Maciel JV; Vieira AA; Duarte FA
    J Sep Sci; 2013 Oct; 36(20):3411-8. PubMed ID: 23946243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ formation of hydrophobic magnetic ionic liquids for dispersive liquid-liquid microextraction.
    Trujillo-Rodríguez MJ; Anderson JL
    J Chromatogr A; 2019 Mar; 1588():8-16. PubMed ID: 30600165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction optimization for chlorophenols determination.
    Bigus P; Namieśnik J; Tobiszewski M
    J Chromatogr A; 2018 Jun; 1553():25-31. PubMed ID: 29653780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples.
    Sanagi MM; Abbas HH; Ibrahim WA; Aboul-Enien HY
    Food Chem; 2012 Jul; 133(2):557-62. PubMed ID: 25683433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of synthetic polycyclic musks in aqueous samples by ultrasound-assisted dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry.
    Yang CY; Ding WH
    Anal Bioanal Chem; 2012 Feb; 402(4):1723-30. PubMed ID: 22139524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speciation analysis of mercury in water samples by dispersive liquid-liquid microextraction coupled to capillary electrophoresis.
    Yang F; Li J; Lu W; Wen Y; Cai X; You J; Ma J; Ding Y; Chen L
    Electrophoresis; 2014 Feb; 35(4):474-81. PubMed ID: 24165973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous determination of alachlor and atrazine in aqueous samples.
    Pirsaheb M; Fattahi N; Shamsipur M; Khodadadi T
    J Sep Sci; 2013 Feb; 36(4):684-9. PubMed ID: 23341303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples.
    Guo L; Lee HK
    J Chromatogr A; 2013 Jul; 1300():24-30. PubMed ID: 23374370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of aqueous fullerene aggregates in water by ultrasound-assisted dispersive liquid-liquid microextraction with liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry.
    Chen HC; Ding WH
    J Chromatogr A; 2012 Feb; 1223():15-23. PubMed ID: 22209304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.
    Zhang R; Wang C; Yue Q; Zhou T; Li N; Zhang H; Hao X
    J Sep Sci; 2014 Nov; 37(21):3133-41. PubMed ID: 25146581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of dispersive liquid-liquid microextraction and solid-phase microextraction: An efficient hyphenated sample preparation method.
    Jafari MT; Saraji M; Mossaddegh M
    J Chromatogr A; 2016 Sep; 1466():50-8. PubMed ID: 27623062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.
    Wang J; Shi Y; Cai Y
    J Chromatogr A; 2018 Apr; 1544():1-7. PubMed ID: 29502897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples.
    Hu L; Zhang P; Shan W; Wang X; Li S; Zhou W; Gao H
    Talanta; 2015 Nov; 144():98-104. PubMed ID: 26452797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.