These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21629646)

  • 1. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse.
    Ganichkin OM; Anedchenko EA; Wahl MC
    PLoS One; 2011; 6(5):e20032. PubMed ID: 21629646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).
    Baron C; Westhof E; Böck A; Giegé R
    J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of human selenocysteine tRNA.
    Itoh Y; Chiba S; Sekine S; Yokoyama S
    Nucleic Acids Res; 2009 Oct; 37(18):6259-68. PubMed ID: 19692584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNA(Sec).
    Sherrer RL; Araiso Y; Aldag C; Ishitani R; Ho JM; Söll D; Nureki O
    Nucleic Acids Res; 2011 Feb; 39(3):1034-41. PubMed ID: 20870747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The length and the secondary structure of the D-stem of human selenocysteine tRNA are the major identity determinants for serine phosphorylation.
    Wu XQ; Gross HJ
    EMBO J; 1994 Jan; 13(1):241-8. PubMed ID: 8306966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec).
    Sturchler C; Lescure A; Keith G; Carbon P; Krol A
    Nucleic Acids Res; 1994 Apr; 22(8):1354-8. PubMed ID: 8031393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.
    Palioura S; Sherrer RL; Steitz TA; Söll D; Simonovic M
    Science; 2009 Jul; 325(5938):321-5. PubMed ID: 19608919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native bovine selenocysteine tRNA(Sec) secondary structure as probed by two plant single-strand-specific nucleases.
    Gabryszuk J; Przykorska A; Monko M; Kuligowska E; Sturchler C; Krol A; Dirheimer G; Szarkowski JW; Keith G
    Gene; 1995 Aug; 161(2):259-63. PubMed ID: 7665090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL; Ho JM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB.
    Itoh Y; Sekine S; Yokoyama S
    Nucleic Acids Res; 2015 Oct; 43(18):9028-38. PubMed ID: 26304550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
    Ganichkin OM; Xu XM; Carlson BA; Mix H; Hatfield DL; Gladyshev VN; Wahl MC
    J Biol Chem; 2008 Feb; 283(9):5849-65. PubMed ID: 18093968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenocysteine inserting tRNAs: an overview.
    Commans S; Böck A
    FEMS Microbiol Rev; 1999 Jun; 23(3):335-51. PubMed ID: 10371037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of selC, the gene for the selenocysteine-inserting tRNA-species in E. coli: effects on in vivo function.
    Baron C; Heider J; Böck A
    Nucleic Acids Res; 1990 Dec; 18(23):6761-6. PubMed ID: 1702199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary structure of bacterial selenocysteine tRNA.
    Itoh Y; Sekine S; Suetsugu S; Yokoyama S
    Nucleic Acids Res; 2013 Jul; 41(13):6729-38. PubMed ID: 23649835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.
    Chiba S; Itoh Y; Sekine S; Yokoyama S
    Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.