These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21629676)

  • 1. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis.
    Fieulaine S; Boularot A; Artaud I; Desmadril M; Dardel F; Meinnel T; Giglione C
    PLoS Biol; 2011 May; 9(5):e1001066. PubMed ID: 21629676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.
    Fieulaine S; Desmadril M; Meinnel T; Giglione C
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):242-52. PubMed ID: 24531459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase.
    Amero CD; Byerly DW; McElroy CA; Simmons A; Foster MP
    Biochemistry; 2009 Aug; 48(32):7595-607. PubMed ID: 19627112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition and structure-activity studies of methionine hydroxamic acid derivatives with bacterial peptide deformylase.
    Grant SK; Green BG; Kozarich JW
    Bioorg Chem; 2001 Aug; 29(4):211-22. PubMed ID: 16256693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking studies of nickel-peptide deformylase (PDF) inhibitors: exploring the new binding pockets.
    Wang Q; Zhang D; Wang J; Cai Z; Xu W
    Biophys Chem; 2006 Jun; 122(1):43-9. PubMed ID: 16545516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin, a naturally occurring antibacterial agent.
    Yoon HJ; Kim HL; Lee SK; Kim HW; Kim HW; Lee JY; Mikami B; Suh SW
    Proteins; 2004 Nov; 57(3):639-42. PubMed ID: 15382235
    [No Abstract]   [Full Text] [Related]  

  • 8. Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture.
    Dirk LM; Schmidt JJ; Cai Y; Barnes JC; Hanger KM; Nayak NR; Williams MA; Grossman RB; Houtz RL; Rodgers DW
    Biochem J; 2008 Aug; 413(3):417-27. PubMed ID: 18412546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms.
    Fieulaine S; Juillan-Binard C; Serero A; Dardel F; Giglione C; Meinnel T; Ferrer JL
    J Biol Chem; 2005 Dec; 280(51):42315-24. PubMed ID: 16192279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new human peptide deformylase inhibitable by actinonin.
    Lee MD; Antczak C; Li Y; Sirotnak FM; Bornmann WG; Scheinberg DA
    Biochem Biophys Res Commun; 2003 Dec; 312(2):309-15. PubMed ID: 14637138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the origins of time-dependent inhibition by polypeptide deformylase inhibitors.
    Totoritis R; Duraiswami C; Taylor AN; Kerrigan JJ; Campobasso N; Smith KJ; Ward P; King BW; Murrayz-Thompson M; Jones AD; Van Aller GS; Aubart KM; Zalacain M; Thrall SH; Meek TD; Schwartz B
    Biochemistry; 2011 Aug; 50(31):6642-54. PubMed ID: 21711014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of substrate recognition and PLP-induced conformational changes in LL-diaminopimelate aminotransferase from Arabidopsis thaliana.
    Watanabe N; Clay MD; van Belkum MJ; Cherney MM; Vederas JC; James MN
    J Mol Biol; 2008 Dec; 384(5):1314-29. PubMed ID: 18952095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineation of alternative conformational states in Escherichia coli peptide deformylase via thermodynamic studies for the binding of actinonin.
    Berg AK; Srivastava DK
    Biochemistry; 2009 Feb; 48(7):1584-94. PubMed ID: 19191548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic machinery of the FAD-dependent AtBBE-like protein 15 for alcohol oxidation: Y193 and Y479 form a catalytic base, Q438 and R292 an alkoxide binding site.
    Messenlehner J; Hetman M; Tripp A; Wallner S; Macheroux P; Gruber K; Daniel B
    Arch Biochem Biophys; 2021 Mar; 700():108766. PubMed ID: 33485849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of the mechanism of human brain aspartoacylase through the binding of an intermediate analogue.
    Le Coq J; Pavlovsky A; Malik R; Sanishvili R; Xu C; Viola RE
    Biochemistry; 2008 Mar; 47(11):3484-92. PubMed ID: 18293939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and activity of human mitochondrial peptide deformylase, a novel cancer target.
    Escobar-Alvarez S; Goldgur Y; Yang G; Ouerfelli O; Li Y; Scheinberg DA
    J Mol Biol; 2009 Apr; 387(5):1211-28. PubMed ID: 19236878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel conformational states of peptide deformylase from pathogenic bacterium Leptospira interrogans: implications for population shift.
    Zhou Z; Song X; Gong W
    J Biol Chem; 2005 Dec; 280(51):42391-6. PubMed ID: 16239225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of peptide deformylase2 from B. cereus.
    Park JK; Kim KH; Moon JH; Kim EE
    J Biochem Mol Biol; 2007 Nov; 40(6):1050-7. PubMed ID: 18047803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants.
    Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ
    Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.