These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21629770)

  • 1. Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.
    Chorley P; Seth AK
    Front Comput Neurosci; 2011; 5():21. PubMed ID: 21629770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive reward signal of dopamine neurons.
    Schultz W
    J Neurophysiol; 1998 Jul; 80(1):1-27. PubMed ID: 9658025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues.
    Brown J; Bullock D; Grossberg S
    J Neurosci; 1999 Dec; 19(23):10502-11. PubMed ID: 10575046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward.
    Tan CO; Bullock D
    J Neurosci; 2008 Oct; 28(40):10062-74. PubMed ID: 18829964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The emergence of saliency and novelty responses from Reinforcement Learning principles.
    Laurent PA
    Neural Netw; 2008 Dec; 21(10):1493-9. PubMed ID: 18938058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal action-learning based on dopamine concentration.
    Morris G; Schmidt R; Bergman H
    Exp Brain Res; 2010 Jan; 200(3-4):307-17. PubMed ID: 19904530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning of sequential movements by neural network model with dopamine-like reinforcement signal.
    Suri RE; Schultz W
    Exp Brain Res; 1998 Aug; 121(3):350-4. PubMed ID: 9746140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An imperfect dopaminergic error signal can drive temporal-difference learning.
    Potjans W; Diesmann M; Morrison A
    PLoS Comput Biol; 2011 May; 7(5):e1001133. PubMed ID: 21589888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A predictive reinforcement model of dopamine neurons for learning approach behavior.
    Contreras-Vidal JL; Schultz W
    J Comput Neurosci; 1999; 6(3):191-214. PubMed ID: 10406133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty-guided learning with scaled prediction errors in the basal ganglia.
    Möller M; Manohar S; Bogacz R
    PLoS Comput Biol; 2022 May; 18(5):e1009816. PubMed ID: 35622863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromodulation of STDP through short-term changes in firing causality.
    Vogt SM; Hofmann UG
    Cogn Neurodyn; 2012 Aug; 6(4):353-66. PubMed ID: 24995051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine neurons report an error in the temporal prediction of reward during learning.
    Hollerman JR; Schultz W
    Nat Neurosci; 1998 Aug; 1(4):304-9. PubMed ID: 10195164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.