These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21629915)
1. Highly stable surface modifications of poly(3-caprolactone) (PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Wang Z; Wang H; Zheng W; Zhang J; Zhao Q; Wang S; Yang Z; Kong D Chem Commun (Camb); 2011 Aug; 47(31):8901-3. PubMed ID: 21629915 [TBL] [Abstract][Full Text] [Related]
2. Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(epsilon-caprolactone) surfaces. Amato I; Ciapetti G; Pagani S; Marletta G; Satriano C; Baldini N; Granchi D Biomaterials; 2007 Sep; 28(25):3668-78. PubMed ID: 17524476 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of anti-CD31 antibody on electrospun poly(ɛ-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Zhang M; Wang Z; Wang Z; Feng S; Xu H; Zhao Q; Wang S; Fang J; Qiao M; Kong D Colloids Surf B Biointerfaces; 2011 Jun; 85(1):32-9. PubMed ID: 21123036 [TBL] [Abstract][Full Text] [Related]
4. Poly(epsilon-caprolactone)/chitin and poly(epsilon-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability. Honma T; Zhao L; Asakawa N; Inoue Y Macromol Biosci; 2006 Mar; 6(3):241-9. PubMed ID: 16534761 [TBL] [Abstract][Full Text] [Related]
5. Addition of biological functionality to poly(epsilon-caprolactone) films. Prime EL; Hamid ZA; Cooper-White JJ; Qiao GG Biomacromolecules; 2007 Aug; 8(8):2416-21. PubMed ID: 17591749 [TBL] [Abstract][Full Text] [Related]
6. Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering. Desmet T; Billiet T; Berneel E; Cornelissen R; Schaubroeck D; Schacht E; Dubruel P Macromol Biosci; 2010 Dec; 10(12):1484-94. PubMed ID: 20857390 [TBL] [Abstract][Full Text] [Related]
7. Microporous "honeycomb" films support enhanced bone formation in vitro. Birch MA; Tanaka M; Kirmizidis G; Yamamoto S; Shimomura M Tissue Eng Part A; 2013 Sep; 19(17-18):2087-96. PubMed ID: 23688155 [TBL] [Abstract][Full Text] [Related]
8. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Schnell E; Klinkhammer K; Balzer S; Brook G; Klee D; Dalton P; Mey J Biomaterials; 2007 Jul; 28(19):3012-25. PubMed ID: 17408736 [TBL] [Abstract][Full Text] [Related]
9. Direct cyclodextrin-mediated ring opening polymerization of ϵ-caprolactone in the presence of yttrium trisphenolate catalyst. Li X; Zhu Y; Ling J; Shen Z Macromol Rapid Commun; 2012 Jun; 33(11):1008-13. PubMed ID: 22368146 [TBL] [Abstract][Full Text] [Related]
10. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone). Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759 [TBL] [Abstract][Full Text] [Related]
11. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010 [TBL] [Abstract][Full Text] [Related]
12. Repetitive Arg-Gly-Asp peptide as a cell-stimulating agent on electrospun poly(ϵ-caprolactone) scaffold for tissue engineering. Chaisri P; Chingsungnoen A; Siri S Biotechnol J; 2013 Nov; 8(11):1323-31. PubMed ID: 24039086 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells. Gopinathan J; Quigley AF; Bhattacharyya A; Padhye R; Kapsa RM; Nayak R; Shanks RA; Houshyar S J Biomed Mater Res A; 2016 Apr; 104(4):853-65. PubMed ID: 26646762 [TBL] [Abstract][Full Text] [Related]
14. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
15. [Study on the binary blends of poly(epsilon-caprolactone) with different cellulose derivatives by infrared spectra]. Chen GM; Huang YP; Ma DZ Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):515-8. PubMed ID: 12953529 [TBL] [Abstract][Full Text] [Related]
16. Influence of film thickness on the crystalline morphology of a copolyesterurethane comprising crystallizable poly(ɛ-caprolactone) soft segments. Fang L; Wischke C; Kratz K; Lendlein A Clin Hemorheol Microcirc; 2015; 60(1):77-87. PubMed ID: 25818152 [TBL] [Abstract][Full Text] [Related]
17. Poly (epsilon-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts. Chung TW; Wang YZ; Huang YY; Pan CI; Wang SS Artif Organs; 2006 Jan; 30(1):35-41. PubMed ID: 16409396 [TBL] [Abstract][Full Text] [Related]
18. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials. Tu Q; Wang JC; Liu R; Chen Y; Zhang Y; Wang DE; Yuan MS; Xu J; Wang J Colloids Surf B Biointerfaces; 2013 Aug; 108():34-43. PubMed ID: 23511626 [TBL] [Abstract][Full Text] [Related]
19. Morphology and properties of organic-inorganic hybrid materials involving TiO2 and poly(epsilon-caprolactone), a biodegradable aliphatic polyester. Li R; Nie K; Pang W; Zhu Q J Biomed Mater Res A; 2007 Oct; 83(1):114-22. PubMed ID: 17385234 [TBL] [Abstract][Full Text] [Related]
20. [Preparation of biodegradable porous films for use as wound coverings]. Kil'deeva NR; Vikhoreva GA; Gal'braĭkh LS; Mironov AV; Bonartseva GA; Perminov PA; Romashova AN Prikl Biokhim Mikrobiol; 2006; 42(6):716-20. PubMed ID: 17168303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]