These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 21630358)
41. A modified Luria-Delbrück fluctuation assay for estimating and comparing mutation rates. Crane GJ; Thomas SM; Jones ME Mutat Res; 1996 Jul; 354(2):171-82. PubMed ID: 8764946 [TBL] [Abstract][Full Text] [Related]
42. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations. Sjögren E; Lennernäs H; Andersson TB; Gråsjö J; Bredberg U Drug Metab Dispos; 2009 Jan; 37(1):47-58. PubMed ID: 18824525 [TBL] [Abstract][Full Text] [Related]
43. Bootstrap methods for statistical inference from stereological estimates of volume fraction. Mattfeldt T; Fleischer F J Microsc; 2005 May; 218(Pt 2):160-70. PubMed ID: 15857377 [TBL] [Abstract][Full Text] [Related]
44. Nonparametric confidence intervals for the ratio of marginal hazard rates of paired survival times. Jin H; Zhao N; Tu D Biom J; 2012 Mar; 54(2):197-213. PubMed ID: 22411484 [TBL] [Abstract][Full Text] [Related]
45. Bootstrap confidence intervals for the mean correlation corrected for Case IV range restriction: a more adequate procedure for meta-analysis. Li JC; Cui Y; Chan W J Appl Psychol; 2013 Jan; 98(1):183-93. PubMed ID: 23088495 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of confidence limit estimates of cluster analysis on molecular marker data. Kayis SA J Sci Food Agric; 2012 Mar; 92(4):776-80. PubMed ID: 21969118 [TBL] [Abstract][Full Text] [Related]
47. Bootstrap confidence intervals for cost-effectiveness ratios: some simulation results. Tambour M; Zethraeus N Health Econ; 1998 Mar; 7(2):143-7. PubMed ID: 9565170 [TBL] [Abstract][Full Text] [Related]
48. Methods for comparing mutation rates using fluctuation assay data. Zheng Q Mutat Res; 2015 Jul; 777():20-2. PubMed ID: 25912079 [TBL] [Abstract][Full Text] [Related]
49. Confidence intervals for distinguishing ordinal and disordinal interactions in multiple regression. Lee S; Lei MK; Brody GH Psychol Methods; 2015 Jun; 20(2):245-58. PubMed ID: 25844629 [TBL] [Abstract][Full Text] [Related]
50. Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Zheng Q Math Biosci; 2002 Apr; 176(2):237-52. PubMed ID: 11916511 [TBL] [Abstract][Full Text] [Related]
51. Standard errors and confidence intervals for correlations corrected for indirect range restriction: A simulation study comparing analytic and bootstrap methods. Kennet-Cohen T; Kleper D; Turvall E Br J Math Stat Psychol; 2018 Feb; 71(1):39-59. PubMed ID: 28631350 [TBL] [Abstract][Full Text] [Related]
52. The psychometric function: II. Bootstrap-based confidence intervals and sampling. Wichmann FA; Hill NJ Percept Psychophys; 2001 Nov; 63(8):1314-29. PubMed ID: 11800459 [TBL] [Abstract][Full Text] [Related]
53. Inference for psychometric functions in the presence of nonstationary behavior. Fründ I; Haenel NV; Wichmann FA J Vis; 2011 May; 11(6):. PubMed ID: 21606382 [TBL] [Abstract][Full Text] [Related]
54. Bootstrap resampling: a powerful method of assessing confidence intervals for doses from experimental data. Iwi G; Millard RK; Palmer AM; Preece AW; Saunders M Phys Med Biol; 1999 Apr; 44(4):N55-62. PubMed ID: 10232818 [TBL] [Abstract][Full Text] [Related]
55. Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability. Beda A; Simpson DM; Faes L PLoS One; 2017; 12(10):e0183230. PubMed ID: 28968394 [TBL] [Abstract][Full Text] [Related]
56. MC-Fit: using Monte-Carlo methods to get accurate confidence limits on enzyme parameters. Dardel F Comput Appl Biosci; 1994 Jun; 10(3):273-5. PubMed ID: 7922682 [TBL] [Abstract][Full Text] [Related]
57. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error. Yafune A; Ishiguro M Stat Med; 1999 Mar; 18(5):581-99. PubMed ID: 10209813 [TBL] [Abstract][Full Text] [Related]
58. New approaches to mutation rate fold change in Luria-Delbrück fluctuation experiments. Zheng Q Math Biosci; 2021 May; 335():108572. PubMed ID: 33662405 [TBL] [Abstract][Full Text] [Related]
59. Computing confidence intervals for standardized regression coefficients. Jones JA; Waller NG Psychol Methods; 2013 Dec; 18(4):435-53. PubMed ID: 24079926 [TBL] [Abstract][Full Text] [Related]
60. Application of the bootstrap procedure provides an alternative to standard statistical procedures in the estimation of the vitamin B-6 requirement. Hansen CM; Evans MA; Shultz TD J Nutr; 1999 Oct; 129(10):1915-9. PubMed ID: 10498768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]