These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 21631422)

  • 41. Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion.
    Kristen AV; Ackermann K; Buss S; Lehmann L; Schnabel PA; Haunstetter A; Katus HA; Hardt SE
    Cardiovasc Pathol; 2013; 22(4):280-6. PubMed ID: 23410819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes.
    Liu TJ; Yeh YC; Ting CT; Lee WL; Wang LC; Lee HW; Wang KY; Lai HC; Lai HC
    Cardiovasc Res; 2008 Nov; 80(2):227-35. PubMed ID: 18632596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. l-Carnitine and heart disease.
    Wang ZY; Liu YY; Liu GH; Lu HB; Mao CY
    Life Sci; 2018 Feb; 194():88-97. PubMed ID: 29241711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Annexin A5: an imaging biomarker of cardiovascular risk.
    Laufer EM; Reutelingsperger CP; Narula J; Hofstra L
    Basic Res Cardiol; 2008 Mar; 103(2):95-104. PubMed ID: 18324365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacologic interventions for the neonate with compromised cardiac function.
    Kulik LA; Hickey PA; Lawrence PR
    J Perinat Neonatal Nurs; 1991 Sep; 5(2):71-83. PubMed ID: 1880745
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanism and therapy application of necrosis during myocardial injury.
    Xu T; Ding W; Tariq MA; Wang Y; Wan Q; Li M; Wang J
    J Cell Mol Med; 2018 May; 22(5):2547-2557. PubMed ID: 29493109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HMGB1 Neutralizing Antibody Attenuates Cardiac Injury and Apoptosis Induced by Hemorrhagic Shock/Resuscitation in Rats.
    Zhou Y; Li Y; Mu T
    Biol Pharm Bull; 2015; 38(8):1150-60. PubMed ID: 26040987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes.
    Dewenter M; von der Lieth A; Katus HA; Backs J
    Circ Res; 2017 Sep; 121(8):1000-1020. PubMed ID: 28963192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway.
    Weiland U; Haendeler J; Ihling C; Albus U; Scholz W; Ruetten H; Zeiher AM; Dimmeler S
    Cardiovasc Res; 2000 Feb; 45(3):671-8. PubMed ID: 10728388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.
    Das A; Durrant D; Salloum FN; Xi L; Kukreja RC
    Pharmacol Ther; 2015 Mar; 147():12-21. PubMed ID: 25444755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes.
    Sossalla S; Maier LS
    Pharmacol Ther; 2012 Mar; 133(3):311-23. PubMed ID: 22133843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pure Polyphenols Applications for Cardiac Health and Disease.
    Santos CN; Gomes A; Oudot C; Dias-Pedroso D; Rodriguez-Mateos A; Vieira HLA; Brenner C
    Curr Pharm Des; 2018; 24(19):2137-2156. PubMed ID: 29879878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous inhibition of poly(ADP-ribose) polymerase does not reduce reperfusion injury in isolated rat heart.
    Nishizawa K; Yanagida S; Yamagishi T; Takayama E; Bessho M; Kusuhara M; Adachi T; Ohsuzu F
    J Cardiovasc Pharmacol; 2013 Jul; 62(1):99-105. PubMed ID: 23846805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiac natriuretic peptides: from basic discovery to clinical practice.
    Hayek S; Nemer M
    Cardiovasc Ther; 2011 Dec; 29(6):362-76. PubMed ID: 20433683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of cell death in the progression of heart failure.
    Moe GW; Marín-García J
    Heart Fail Rev; 2016 Mar; 21(2):157-67. PubMed ID: 26872675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testosterone promotes apoptotic damage in human renal tubular cells.
    Verzola D; Gandolfo MT; Salvatore F; Villaggio B; Gianiorio F; Traverso P; Deferrari G; Garibotto G
    Kidney Int; 2004 Apr; 65(4):1252-61. PubMed ID: 15086464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity.
    Yang W; Guastella J; Huang JC; Wang Y; Zhang L; Xue D; Tran M; Woodward R; Kasibhatla S; Tseng B; Drewe J; Cai SX
    Br J Pharmacol; 2003 Sep; 140(2):402-12. PubMed ID: 12970077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical Chaperone 4-Phenylbutyric Acid Reduces Cardiac Ischemia/Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress.
    Jian L; Lu Y; Lu S; Lu C
    Med Sci Monit; 2016 Dec; 22():5218-5227. PubMed ID: 28036323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ER stress in cardiovascular disease.
    Minamino T; Kitakaze M
    J Mol Cell Cardiol; 2010 Jun; 48(6):1105-10. PubMed ID: 19913545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation.
    Zhang Y; Zhang X; Park TS; Gidday JM
    J Cereb Blood Flow Metab; 2005 Jul; 25(7):868-77. PubMed ID: 15729291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.