BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21631585)

  • 1. Physicochemical and biological aspects of macrophage-mediated drug targeting in anti-microbial therapy.
    Kunjachan S; Jose S; Thomas CA; Joseph E; Kiessling F; Lammers T
    Fundam Clin Pharmacol; 2012 Feb; 26(1):63-71. PubMed ID: 21631585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic potential of nanoparticulate systems for macrophage targeting.
    Chellat F; Merhi Y; Moreau A; Yahia L
    Biomaterials; 2005 Dec; 26(35):7260-75. PubMed ID: 16023200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theranostic nanomedicine.
    Lammers T; Aime S; Hennink WE; Storm G; Kiessling F
    Acc Chem Res; 2011 Oct; 44(10):1029-38. PubMed ID: 21545096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug delivery strategies for therapy of visceral leishmaniasis.
    Gupta S; Pal A; Vyas SP
    Expert Opin Drug Deliv; 2010 Mar; 7(3):371-402. PubMed ID: 20201740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting toxicity and efficacy of polymeric nanomedicines.
    Igarashi E
    Toxicol Appl Pharmacol; 2008 May; 229(1):121-34. PubMed ID: 18355886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined liposomal immuno- and chemotherapy of visceral leishmaniasis.
    Everlien H; Hockertz S
    Arzneimittelforschung; 1999 Nov; 49(11):954-61. PubMed ID: 10604050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation.
    Datta N; Mukherjee S; Das L; Das PK
    Eur J Immunol; 2003 Jun; 33(6):1508-18. PubMed ID: 12778468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic evaluation of free and liposome-loaded furazolidone in experimental visceral leishmaniasis.
    Tempone AG; Mortara RA; de Andrade HF; Reimão JQ
    Int J Antimicrob Agents; 2010 Aug; 36(2):159-63. PubMed ID: 20554161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery systems to increase the selectivity of antibiotics in phagocytic cells.
    Briones E; Colino CI; Lanao JM
    J Control Release; 2008 Feb; 125(3):210-27. PubMed ID: 18077047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome.
    Patel B; Gupta N; Ahsan F
    Eur J Pharm Biopharm; 2015 Jan; 89():163-74. PubMed ID: 25497488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotheranostics and image-guided drug delivery: current concepts and future directions.
    Lammers T; Kiessling F; Hennink WE; Storm G
    Mol Pharm; 2010 Dec; 7(6):1899-912. PubMed ID: 20822168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis.
    Nahar M; Dubey V; Mishra D; Mishra PK; Dube A; Jain NK
    J Drug Target; 2010 Feb; 18(2):93-105. PubMed ID: 19640212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking.
    Matha K; Calvignac B; Gangneux JP; Benoit JP
    Expert Opin Drug Deliv; 2021 Apr; 18(4):471-487. PubMed ID: 33217254
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin.
    Broz P; Ben-Haim N; Grzelakowski M; Marsch S; Meier W; Hunziker P
    J Cardiovasc Pharmacol; 2008 Mar; 51(3):246-52. PubMed ID: 18356688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of the anti-leishmanial activity of biodegradable nanoparticles.
    Venier-Julienne MC; Vouldoukis I; Monjour L; Benoit JP
    J Drug Target; 1995; 3(1):23-9. PubMed ID: 7655817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis.
    Kunjachan S; Gupta S; Dwivedi AK; Dube A; Chourasia MK
    J Microencapsul; 2011; 28(4):301-10. PubMed ID: 21545321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of parasite-specific immunoliposome-encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis.
    Mukherjee S; Das L; Kole L; Karmakar S; Datta N; Das PK
    J Infect Dis; 2004 Mar; 189(6):1024-34. PubMed ID: 14999606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.