These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21632087)
1. Assessment of nitrification in groundwater filters for drinking water production by qPCR and activity measurement. de Vet WW; Kleerebezem R; van der Wielen PW; Rietveld LC; van Loosdrecht MC Water Res; 2011 Jul; 45(13):4008-18. PubMed ID: 21632087 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production. de Vet WW; Dinkla IJ; Muyzer G; Rietveld LC; van Loosdrecht MC Water Res; 2009 Jan; 43(1):182-94. PubMed ID: 18995879 [TBL] [Abstract][Full Text] [Related]
3. Abundance and diversity of ammonia-oxidizing archaea and bacteria on biological activated carbon in a pilot-scale drinking water treatment plant with different treatment processes. Kasuga I; Nakagaki H; Kurisu F; Furumai H Water Sci Technol; 2010; 61(12):3070-7. PubMed ID: 20555203 [TBL] [Abstract][Full Text] [Related]
4. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. De Corte D; Yokokawa T; Varela MM; Agogué H; Herndl GJ ISME J; 2009 Feb; 3(2):147-58. PubMed ID: 18818711 [TBL] [Abstract][Full Text] [Related]
5. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment. Lee CO; Boe-Hansen R; Musovic S; Smets B; Albrechtsen HJ; Binning P Water Res; 2014 Nov; 64():226-236. PubMed ID: 25068473 [TBL] [Abstract][Full Text] [Related]
6. Predominance of ammonia-oxidizing archaea on granular activated carbon used in a full-scale advanced drinking water treatment plant. Kasuga I; Nakagaki H; Kurisu F; Furumai H Water Res; 2010 Sep; 44(17):5039-49. PubMed ID: 20673944 [TBL] [Abstract][Full Text] [Related]
7. Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater. Vet WW; Dinkla IJ; Abbas BA; Rietveld LC; Loosdrecht MC Biotechnol Bioeng; 2012 Apr; 109(4):904-12. PubMed ID: 22105778 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Wang S; Wang Y; Feng X; Zhai L; Zhu G Appl Microbiol Biotechnol; 2011 Apr; 90(2):779-87. PubMed ID: 21253721 [TBL] [Abstract][Full Text] [Related]
9. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Santoro AE; Casciotti KL; Francis CA Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus limitation in nitrifying groundwater filters. de Vet WW; van Loosdrecht MC; Rietveld LC Water Res; 2012 Mar; 46(4):1061-9. PubMed ID: 22209259 [TBL] [Abstract][Full Text] [Related]
11. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Boyle-Yarwood SA; Bottomley PJ; Myrold DD Environ Microbiol; 2008 Nov; 10(11):2956-65. PubMed ID: 18393992 [TBL] [Abstract][Full Text] [Related]
12. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
13. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Limpiyakorn T; Sonthiphand P; Rongsayamanont C; Polprasert C Bioresour Technol; 2011 Feb; 102(4):3694-701. PubMed ID: 21185720 [TBL] [Abstract][Full Text] [Related]
14. Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment. Laurent P; Kihn A; Andersson A; Servais P Environ Technol; 2003 Mar; 24(3):277-87. PubMed ID: 12703853 [TBL] [Abstract][Full Text] [Related]
15. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. Offre P; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195 [TBL] [Abstract][Full Text] [Related]
16. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production. Wagner FB; Nielsen PB; Boe-Hansen R; Albrechtsen HJ Water Res; 2016 May; 95():280-8. PubMed ID: 27010788 [TBL] [Abstract][Full Text] [Related]
17. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater. Albers CN; Ellegaard-Jensen L; Hansen LH; Sørensen SR Water Res; 2018 Feb; 129():1-10. PubMed ID: 29127829 [TBL] [Abstract][Full Text] [Related]
18. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. Höfferle Š; Nicol GW; Pal L; Hacin J; Prosser JI; Mandić-Mulec I FEMS Microbiol Ecol; 2010 Nov; 74(2):302-15. PubMed ID: 21039647 [TBL] [Abstract][Full Text] [Related]
19. Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China. Liu Z; Huang S; Sun G; Xu Z; Xu M Microbiol Res; 2011 Jul; 166(5):337-45. PubMed ID: 20869216 [TBL] [Abstract][Full Text] [Related]
20. Development and calibration of a nitrification PDE model based on experimental data issued from biofilter treating drinking water. Queinnec I; Ochoa JC; Wouwer AV; Paul E Biotechnol Bioeng; 2006 Jun; 94(2):209-22. PubMed ID: 16598794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]