These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21632092)
1. The impact of hardpans and cemented layers on oxygen diffusivity in mining waste heaps: diffusion experiments and modelling studies. Kohfahl C; Graupner T; Fetzer C; Holzbecher E; Pekdeger A Sci Total Environ; 2011 Aug; 409(17):3197-205. PubMed ID: 21632092 [TBL] [Abstract][Full Text] [Related]
2. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps: a field study of the Halsbrücke lead-zinc mine tailings (Germany). Kohfahl C; Graupner T; Fetzer C; Pekdeger A Sci Total Environ; 2010 Nov; 408(23):5932-9. PubMed ID: 20850166 [TBL] [Abstract][Full Text] [Related]
3. Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation. Redwan M; Rammlmair D; Meima JA Sci Total Environ; 2012 Jan; 414():480-93. PubMed ID: 22119024 [TBL] [Abstract][Full Text] [Related]
4. [Impact of polymetallic mine (Zn, Pb, Cu) residues on surface water, sediments and soils at the vicinity (Marrakech, Morocco)]. El Adnani M; Rodriguez-Maroto JM; Sbai ML; Loukili Idrissi L; Nejmeddine A Environ Technol; 2007 Sep; 28(9):969-85. PubMed ID: 17910250 [TBL] [Abstract][Full Text] [Related]
5. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California. Kim CS; Stack DH; Rytuba JJ J Environ Monit; 2012 Jul; 14(7):1798-813. PubMed ID: 22718027 [TBL] [Abstract][Full Text] [Related]
6. Impact of unconfined sulphur-mine waste on a semi-arid environment (Almería, SE Spain). González V; García I; del Moral F; de Haro S; Sánchez JA; Simón M J Environ Manage; 2011 Jun; 92(6):1509-19. PubMed ID: 21277075 [TBL] [Abstract][Full Text] [Related]
7. Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste. Kim H; Benson CH J Contam Hydrol; 2004 Jul; 71(1-4):193-218. PubMed ID: 15145567 [TBL] [Abstract][Full Text] [Related]
8. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Pagnanelli F; Moscardini E; Giuliano V; Toro L Environ Pollut; 2004 Nov; 132(2):189-201. PubMed ID: 15312934 [TBL] [Abstract][Full Text] [Related]
9. Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico. Sracek O; Armienta MA; Rodríguez R; Villaseñor G J Environ Monit; 2010 Jan; 12(1):329-37. PubMed ID: 20082029 [TBL] [Abstract][Full Text] [Related]
10. Toxic elements at a disused mine district: Particle size distribution and total concentration in stream sediments and mine tailings. Giuliano V; Pagnanelli F; Bornoroni L; Toro L; Abbruzzese C J Hazard Mater; 2007 Sep; 148(1-2):409-18. PubMed ID: 17400373 [TBL] [Abstract][Full Text] [Related]
11. A methodology for the assessment of rehabilitation success of post mining landscapes--sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia. Hancock GR; Grabham MK; Martin P; Evans KG; Bollhöfer A Sci Total Environ; 2006 Feb; 354(2-3):103-19. PubMed ID: 16242178 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia. Eapaea MP; Parry D; Noller B Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841 [TBL] [Abstract][Full Text] [Related]
13. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
14. Use of O2 consumption and CO2 production in kinetic cells to delineate pyrite oxidation-carbonate buffering and microbial respiration in unsaturated media. Lee ES; Hendry MJ; Hollings P J Contam Hydrol; 2003 Sep; 65(3-4):203-17. PubMed ID: 12935950 [TBL] [Abstract][Full Text] [Related]
15. The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride. Biver M; Krachler M; Shotyk W J Environ Qual; 2011; 40(4):1143-52. PubMed ID: 21712584 [TBL] [Abstract][Full Text] [Related]
16. [Impact of acid mining drainage on the quality of superficial waters and sediments in the Marrakesh region, Morocco]. El Gharmali A; Rada A; El Adnani M; Tahlil N; El Meray M; Nejmeddine A Environ Technol; 2004 Dec; 25(12):1431-42. PubMed ID: 15691204 [TBL] [Abstract][Full Text] [Related]
17. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824 [TBL] [Abstract][Full Text] [Related]
18. Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia mining region, Western Gulf of California. Shumilin E; Gordeev V; Figueroa GR; Demina L; Choumiline K Arch Environ Contam Toxicol; 2011 Jan; 60(1):8-25. PubMed ID: 20480159 [TBL] [Abstract][Full Text] [Related]
19. Source term characterisation using concentration trends and geochemical associations of Pb and Zn in river sediments in the vicinity of a disused mine site: implications for contaminant metal dispersion processes. Pulford ID; MacKenzie AB; Donatello S; Hastings L Environ Pollut; 2009 May; 157(5):1649-56. PubMed ID: 19155111 [TBL] [Abstract][Full Text] [Related]
20. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation. Cukrowska EM; Govender K; Viljoen M Chemosphere; 2004 Jul; 56(1):39-50. PubMed ID: 15109878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]