These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21632292)

  • 1. Induction of electric field in human bodies moving near MRI: an efficient BEM computational procedure.
    Chiampi M; Zilberti L
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2787-93. PubMed ID: 21632292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments on "Induction of electric field in human bodies moving near MRI: an efficient BEM computational procedure".
    Sánchez CC
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):880-1; discussion 882-3. PubMed ID: 23192477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner.
    Laakso I; Kännälä S; Jokela K
    Phys Med Biol; 2013 Apr; 58(8):2625-40. PubMed ID: 23552657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical evaluation of the fields induced by body motion in or near high-field MRI scanners.
    Crozier S; Liu F
    Prog Biophys Mol Biol; 2005; 87(2-3):267-78. PubMed ID: 15556665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of currents in workers induced by body-motion around high-ultrahigh field MRI magnets.
    ; Trakic A; Wang H; Liu F
    J Magn Reson Imaging; 2007 Nov; 26(5):1261-77. PubMed ID: 17969138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A boundary element method/Brownian dynamics approach for simulating DNA electrophoresis in electrically insulating microfabricated devices.
    Cho J; Kenward M; Dorfman KD
    Electrophoresis; 2009 May; 30(9):1482-9. PubMed ID: 19350540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical survey of motion-induced electric fields experienced by MRI operators.
    Zilberti L; Chiampi M
    Health Phys; 2013 Dec; 105(6):498-511. PubMed ID: 24162054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI--applications to high field analyses.
    Wei Q; Liu F; Xia L; Crozier S
    J Magn Reson; 2005 Feb; 172(2):222-30. PubMed ID: 15649749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational estimation of magnetically induced electric fields in a rotating head.
    Ilvonen S; Laakso I
    Phys Med Biol; 2009 Jan; 54(2):341-51. PubMed ID: 19098349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments.
    Fuentes MA; Trakic A; Wilson SJ; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1355-64. PubMed ID: 18390326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-coil: an inverse boundary element method for a quasi-static problem.
    Sanchez CC; Garcia SG; Power H
    Phys Med Biol; 2010 Jun; 55(11):3087-100. PubMed ID: 20463375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of biological effects, dosimetric models, and exposure assessment related to ELF electric- and magnetic-field guidelines.
    Kavet R; Stuchly MA; Bailey WH; Bracken TD
    Appl Occup Environ Hyg; 2001 Dec; 16(12):1118-38. PubMed ID: 11783873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved quasi-static finite-difference scheme for induced field evaluation based on the biconjugate gradient method.
    Wang H; Liu F; Trakic A; Crozier S
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1800-8. PubMed ID: 18595798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical dosimetry ELF: accuracy of the method, variability of models and parameters, and the implication for quantifying guidelines.
    Bahr A; Bolz T; Hennes C
    Health Phys; 2007 Jun; 92(6):521-30. PubMed ID: 17495652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of workers to pulsed gradients in MRI.
    Crozier S; Wang H; Trakic A; Liu F
    J Magn Reson Imaging; 2007 Nov; 26(5):1236-54. PubMed ID: 17969133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved boundary element method for realistic volume-conductor modeling.
    Fuchs M; Drenckhahn R; Wischmann HA; Wagner M
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):980-97. PubMed ID: 9691573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.
    Glover PM; Bowtell R
    Phys Med Biol; 2008 Jan; 53(2):361-73. PubMed ID: 18184992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient impedance method for induced field evaluation based on a stabilized Bi-conjugate gradient algorithm.
    Wang H; Liu F; Xia L; Crozier S
    Phys Med Biol; 2008 Nov; 53(22):6363-75. PubMed ID: 18941281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of electromagnetic field distributions inside biological bodies by using an inverse scattering procedure based on a statistical cooling algorithm.
    Caorsi S; Massa A
    Bioelectromagnetics; 2000 Sep; 21(6):422-31. PubMed ID: 10972946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A distributed equivalent magnetic current based FDTD method for the calculation of E-fields induced by gradient coils.
    Liu F; Crozier S
    J Magn Reson; 2004 Aug; 169(2):323-7. PubMed ID: 15261629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.