These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21632530)

  • 1. Crystal structure of the heme d1 biosynthesis enzyme NirE in complex with its substrate reveals new insights into the catalytic mechanism of S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferases.
    Storbeck S; Saha S; Krausze J; Klink BU; Heinz DW; Layer G
    J Biol Chem; 2011 Jul; 286(30):26754-67. PubMed ID: 21632530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis.
    Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G
    FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Dynamics, Ligand Binding and Effects of Mutations in NirE an S-Adenosyl-L-Methionine Dependent Methyltransferase.
    Singh W; Karabencheva-Christova TG; Black GW; Ainsley J; Dover L; Christov CZ
    Sci Rep; 2016 Jan; 6():20107. PubMed ID: 26822701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis.
    Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS
    J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis.
    Kawasaki S; Arai H; Kodama T; Igarashi Y
    J Bacteriol; 1997 Jan; 179(1):235-42. PubMed ID: 8982003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of O-methylation of (2-heptyl-)1-hydroxyquinolin-4(1H)-one and related compounds by the heterocyclic toxin methyltransferase Rv0560c of Mycobacterium tuberculosis.
    Sartor P; Denkhaus L; Gerhardt S; Einsle O; Fetzner S
    J Struct Biol; 2021 Dec; 213(4):107794. PubMed ID: 34506908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues.
    Haufschildt K; Schmelz S; Kriegler TM; Neumann A; Streif J; Arai H; Heinz DW; Layer G
    J Mol Biol; 2014 Sep; 426(19):3272-3286. PubMed ID: 25083922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during heme d
    Boss L; Oehme R; Billig S; Birkemeyer C; Layer G
    FEBS J; 2017 Dec; 284(24):4314-4327. PubMed ID: 29076625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of glycine N-methyltransferase.
    Takata Y; Huang Y; Komoto J; Yamada T; Konishi K; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    Biochemistry; 2003 Jul; 42(28):8394-402. PubMed ID: 12859184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans.
    Blanche F; Debussche L; Thibaut D; Crouzet J; Cameron B
    J Bacteriol; 1989 Aug; 171(8):4222-31. PubMed ID: 2546914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of NirF: insights into its role in heme d
    Klünemann T; Nimtz M; Jänsch L; Layer G; Blankenfeldt W
    FEBS J; 2021 Jan; 288(1):244-261. PubMed ID: 32255259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of NodS N-methyltransferase from Bradyrhizobium japonicum in ligand-free form and as SAH complex.
    Cakici O; Sikorski M; Stepkowski T; Bujacz G; Jaskolski M
    J Mol Biol; 2010 Dec; 404(5):874-89. PubMed ID: 20970431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Purification and characterization of S-adenosyl-L-methionine:uroporphyrinogen Ⅲ methyltransferase from Rhodobacter capsulatus SB1003].
    Kang J; Fang H; Dong H; Song W; Zhang D
    Sheng Wu Gong Cheng Xue Bao; 2017 Jan; 33(1):55-67. PubMed ID: 28959863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus.
    Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I
    J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase ternary complexes.
    Komoto J; Yamada T; Takata Y; Konishi K; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    Biochemistry; 2004 Nov; 43(45):14385-94. PubMed ID: 15533043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siroheme biosynthesis in higher plants. Analysis of an S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana.
    Leustek T; Smith M; Murillo M; Singh DP; Smith AG; Woodcock SC; Awan SJ; Warren MJ
    J Biol Chem; 1997 Jan; 272(5):2744-52. PubMed ID: 9006913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional roles in S-adenosyl-L-methionine binding and catalysis for active site residues of the thiostrepton resistance methyltransferase.
    Myers CL; Kuiper EG; Grant PC; Hernandez J; Conn GL; Honek JF
    FEBS Lett; 2015 Oct; 589(21):3263-70. PubMed ID: 26450779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, sequencing, and expression of the uroporphyrinogen III methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii).
    Sattler I; Roessner CA; Stolowich NJ; Hardin SH; Harris-Haller LW; Yokubaitis NT; Murooka Y; Hashimoto Y; Scott AI
    J Bacteriol; 1995 Mar; 177(6):1564-9. PubMed ID: 7883713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new structural form in the SAM/metal-dependent o‑methyltransferase family: MycE from the mycinamicin biosynthetic pathway.
    Akey DL; Li S; Konwerski JR; Confer LA; Bernard SM; Anzai Y; Kato F; Sherman DH; Smith JL
    J Mol Biol; 2011 Oct; 413(2):438-50. PubMed ID: 21884704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products.
    Jansson A; Koskiniemi H; Mäntsälä P; Niemi J; Schneider G
    J Biol Chem; 2004 Sep; 279(39):41149-56. PubMed ID: 15273252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.